Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the equation [tex]\( x + \frac{35}{x} = -12 \)[/tex], let's find the values of [tex]\( x \)[/tex] that satisfy this equation.
1. Rearrange the Equation:
Start by moving all terms to one side of the equation to set it to zero:
[tex]\[ x + \frac{35}{x} + 12 = 0 \][/tex]
2. Multiply by [tex]\( x \)[/tex]:
To clear the fraction, multiply every term by [tex]\( x \)[/tex]:
[tex]\[ x^2 + 35 + 12x = 0 \][/tex]
3. Form a Quadratic Equation:
Combine like terms:
[tex]\[ x^2 + 12x + 35 = 0 \][/tex]
4. Solve the Quadratic Equation:
Recognize that this is a standard quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex]. To solve it, either factorize it or use the quadratic formula.
5. Apply the Quadratic Formula:
The quadratic formula is:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our equation [tex]\( x^2 + 12x + 35 = 0 \)[/tex], [tex]\(a = 1\)[/tex], [tex]\(b = 12\)[/tex], and [tex]\(c = 35\)[/tex].
6. Calculate the Discriminant:
[tex]\[ \Delta = b^2 - 4ac = 12^2 - 4 \cdot 1 \cdot 35 = 144 - 140 = 4 \][/tex]
7. Find the Solutions:
Now, calculate the values of [tex]\( x \)[/tex]:
[tex]\[ x = \frac{-12 \pm \sqrt{4}}{2 \cdot 1} = \frac{-12 \pm 2}{2} \][/tex]
This gives us two solutions:
[tex]\[ x = \frac{-12 + 2}{2} = \frac{-10}{2} = -5 \][/tex]
[tex]\[ x = \frac{-12 - 2}{2} = \frac{-14}{2} = -7 \][/tex]
Therefore, the solutions to the equation [tex]\( x + \frac{35}{x} = -12 \)[/tex] are:
[tex]\[ x = [-7, -5] \][/tex]
1. Rearrange the Equation:
Start by moving all terms to one side of the equation to set it to zero:
[tex]\[ x + \frac{35}{x} + 12 = 0 \][/tex]
2. Multiply by [tex]\( x \)[/tex]:
To clear the fraction, multiply every term by [tex]\( x \)[/tex]:
[tex]\[ x^2 + 35 + 12x = 0 \][/tex]
3. Form a Quadratic Equation:
Combine like terms:
[tex]\[ x^2 + 12x + 35 = 0 \][/tex]
4. Solve the Quadratic Equation:
Recognize that this is a standard quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex]. To solve it, either factorize it or use the quadratic formula.
5. Apply the Quadratic Formula:
The quadratic formula is:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For our equation [tex]\( x^2 + 12x + 35 = 0 \)[/tex], [tex]\(a = 1\)[/tex], [tex]\(b = 12\)[/tex], and [tex]\(c = 35\)[/tex].
6. Calculate the Discriminant:
[tex]\[ \Delta = b^2 - 4ac = 12^2 - 4 \cdot 1 \cdot 35 = 144 - 140 = 4 \][/tex]
7. Find the Solutions:
Now, calculate the values of [tex]\( x \)[/tex]:
[tex]\[ x = \frac{-12 \pm \sqrt{4}}{2 \cdot 1} = \frac{-12 \pm 2}{2} \][/tex]
This gives us two solutions:
[tex]\[ x = \frac{-12 + 2}{2} = \frac{-10}{2} = -5 \][/tex]
[tex]\[ x = \frac{-12 - 2}{2} = \frac{-14}{2} = -7 \][/tex]
Therefore, the solutions to the equation [tex]\( x + \frac{35}{x} = -12 \)[/tex] are:
[tex]\[ x = [-7, -5] \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.