Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the given problem, we need to use the change of base formula for logarithms. The change of base formula states that for any positive numbers [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] (with [tex]\( a \neq 1 \)[/tex] and [tex]\( b \neq 1 \)[/tex]), the logarithm of [tex]\( a \)[/tex] to the base [tex]\( b \)[/tex] can be expressed as:
[tex]\[ \log_b(a) = \frac{\log_c(a)}{\log_c(b)} \][/tex]
Here, we want to apply this change of base formula to the logarithm [tex]\(\log_4(x+2)\)[/tex]. According to the change of base formula, we can express [tex]\(\log_4(x+2)\)[/tex] using a common logarithm (base 10) or a natural logarithm (base [tex]\( e \)[/tex]). Let's use the common logarithm (base 10) for simplicity:
[tex]\[ \log_4(x+2) = \frac{\log(x+2)}{\log(4)} \][/tex]
This shows that [tex]\(\log_4(x+2)\)[/tex] can be rewritten as the ratio of the logarithm (base 10) of [tex]\( x + 2 \)[/tex] to the logarithm (base 10) of 4.
Given the options:
1. [tex]\(\frac{\log (x+2)}{\log 4}\)[/tex]
2. [tex]\(\frac{\log 4}{\log (x+2)}\)[/tex]
3. [tex]\(\frac{\log 4}{\log x+2}\)[/tex]
4. [tex]\(\frac{\log x+2}{\log 4}\)[/tex]
The correct expression that results when the change of base formula is applied to [tex]\(\log_4(x+2)\)[/tex] is:
[tex]\[ \boxed{\frac{\log (x+2)}{\log 4}} \][/tex]
Therefore, the correct answer is option 1.
[tex]\[ \log_b(a) = \frac{\log_c(a)}{\log_c(b)} \][/tex]
Here, we want to apply this change of base formula to the logarithm [tex]\(\log_4(x+2)\)[/tex]. According to the change of base formula, we can express [tex]\(\log_4(x+2)\)[/tex] using a common logarithm (base 10) or a natural logarithm (base [tex]\( e \)[/tex]). Let's use the common logarithm (base 10) for simplicity:
[tex]\[ \log_4(x+2) = \frac{\log(x+2)}{\log(4)} \][/tex]
This shows that [tex]\(\log_4(x+2)\)[/tex] can be rewritten as the ratio of the logarithm (base 10) of [tex]\( x + 2 \)[/tex] to the logarithm (base 10) of 4.
Given the options:
1. [tex]\(\frac{\log (x+2)}{\log 4}\)[/tex]
2. [tex]\(\frac{\log 4}{\log (x+2)}\)[/tex]
3. [tex]\(\frac{\log 4}{\log x+2}\)[/tex]
4. [tex]\(\frac{\log x+2}{\log 4}\)[/tex]
The correct expression that results when the change of base formula is applied to [tex]\(\log_4(x+2)\)[/tex] is:
[tex]\[ \boxed{\frac{\log (x+2)}{\log 4}} \][/tex]
Therefore, the correct answer is option 1.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.