Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the magnitude of the magnetic force exerted on the particle, we need to follow these steps:
### Step 1: Calculate the Kinetic Energy Gained by the Particle
When a particle is accelerated from rest through a potential difference, the kinetic energy it gains is given by:
[tex]\[ K.E. = q \cdot V \][/tex]
where:
- [tex]\( q \)[/tex] is the charge of the particle.
- [tex]\( V \)[/tex] is the potential difference.
Here, the charge [tex]\( q = 3.20 \times 10^{-19} \, \text{C} \)[/tex] and the potential difference [tex]\( V = 1.6 \times 10^7 \, \text{V} \)[/tex].
[tex]\[ K.E. = (3.20 \times 10^{-19} \, \text{C}) \times (1.6 \times 10^7 \, \text{V}) = 5.12 \times 10^{-12} \, \text{J} \][/tex]
### Step 2: Calculate the Velocity of the Particle
The kinetic energy of a particle moving with velocity [tex]\( v \)[/tex] and mass [tex]\( m \)[/tex] is given by:
[tex]\[ K.E. = \frac{1}{2} m v^2 \][/tex]
Solving for [tex]\( v \)[/tex], we get:
[tex]\[ v = \sqrt{\frac{2 \, K.E.}{m}} \][/tex]
Using the given mass [tex]\( m = 6.4 \times 10^{-27} \, \text{kg} \)[/tex] and kinetic energy [tex]\( K.E. = 5.12 \times 10^{-12} \, \text{J} \)[/tex],
[tex]\[ v = \sqrt{\frac{2 \times 5.12 \times 10^{-12} \, \text{J}}{6.4 \times 10^{-27} \, \text{kg}}} = \sqrt{1.6 \times 10^{15}} = 4.00 \times 10^7 \, \text{m/s} \][/tex]
### Step 3: Calculate the Magnetic Force
The magnetic force [tex]\( F \)[/tex] on a particle moving perpendicular to a magnetic field is given by:
[tex]\[ F = q \cdot v \cdot B \][/tex]
where:
- [tex]\( q \)[/tex] is the charge of the particle.
- [tex]\( v \)[/tex] is the velocity of the particle.
- [tex]\( B \)[/tex] is the magnetic field strength.
Using [tex]\( q = 3.20 \times 10^{-19} \, \text{C} \)[/tex], [tex]\( v = 4.00 \times 10^7 \, \text{m/s} \)[/tex], and [tex]\( B = 3.2 \, \text{T} \)[/tex],
[tex]\[ F = (3.20 \times 10^{-19} \, \text{C}) \times (4.00 \times 10^7 \, \text{m/s}) \times (3.2 \, \text{T}) = 4.096 \times 10^{-11} \, \text{N} \][/tex]
### Conclusion
The magnitude of the magnetic force exerted on the particle is:
[tex]\[ \boxed{4.09 \times 10^{-11} \, \text{N}} \][/tex]
This corresponds to the provided option [tex]\( 4.09 \times 10^{-11} \, \text{N} \)[/tex].
### Step 1: Calculate the Kinetic Energy Gained by the Particle
When a particle is accelerated from rest through a potential difference, the kinetic energy it gains is given by:
[tex]\[ K.E. = q \cdot V \][/tex]
where:
- [tex]\( q \)[/tex] is the charge of the particle.
- [tex]\( V \)[/tex] is the potential difference.
Here, the charge [tex]\( q = 3.20 \times 10^{-19} \, \text{C} \)[/tex] and the potential difference [tex]\( V = 1.6 \times 10^7 \, \text{V} \)[/tex].
[tex]\[ K.E. = (3.20 \times 10^{-19} \, \text{C}) \times (1.6 \times 10^7 \, \text{V}) = 5.12 \times 10^{-12} \, \text{J} \][/tex]
### Step 2: Calculate the Velocity of the Particle
The kinetic energy of a particle moving with velocity [tex]\( v \)[/tex] and mass [tex]\( m \)[/tex] is given by:
[tex]\[ K.E. = \frac{1}{2} m v^2 \][/tex]
Solving for [tex]\( v \)[/tex], we get:
[tex]\[ v = \sqrt{\frac{2 \, K.E.}{m}} \][/tex]
Using the given mass [tex]\( m = 6.4 \times 10^{-27} \, \text{kg} \)[/tex] and kinetic energy [tex]\( K.E. = 5.12 \times 10^{-12} \, \text{J} \)[/tex],
[tex]\[ v = \sqrt{\frac{2 \times 5.12 \times 10^{-12} \, \text{J}}{6.4 \times 10^{-27} \, \text{kg}}} = \sqrt{1.6 \times 10^{15}} = 4.00 \times 10^7 \, \text{m/s} \][/tex]
### Step 3: Calculate the Magnetic Force
The magnetic force [tex]\( F \)[/tex] on a particle moving perpendicular to a magnetic field is given by:
[tex]\[ F = q \cdot v \cdot B \][/tex]
where:
- [tex]\( q \)[/tex] is the charge of the particle.
- [tex]\( v \)[/tex] is the velocity of the particle.
- [tex]\( B \)[/tex] is the magnetic field strength.
Using [tex]\( q = 3.20 \times 10^{-19} \, \text{C} \)[/tex], [tex]\( v = 4.00 \times 10^7 \, \text{m/s} \)[/tex], and [tex]\( B = 3.2 \, \text{T} \)[/tex],
[tex]\[ F = (3.20 \times 10^{-19} \, \text{C}) \times (4.00 \times 10^7 \, \text{m/s}) \times (3.2 \, \text{T}) = 4.096 \times 10^{-11} \, \text{N} \][/tex]
### Conclusion
The magnitude of the magnetic force exerted on the particle is:
[tex]\[ \boxed{4.09 \times 10^{-11} \, \text{N}} \][/tex]
This corresponds to the provided option [tex]\( 4.09 \times 10^{-11} \, \text{N} \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.