Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the magnitude of the magnetic force exerted on the particle, we need to follow these steps:
### Step 1: Calculate the Kinetic Energy Gained by the Particle
When a particle is accelerated from rest through a potential difference, the kinetic energy it gains is given by:
[tex]\[ K.E. = q \cdot V \][/tex]
where:
- [tex]\( q \)[/tex] is the charge of the particle.
- [tex]\( V \)[/tex] is the potential difference.
Here, the charge [tex]\( q = 3.20 \times 10^{-19} \, \text{C} \)[/tex] and the potential difference [tex]\( V = 1.6 \times 10^7 \, \text{V} \)[/tex].
[tex]\[ K.E. = (3.20 \times 10^{-19} \, \text{C}) \times (1.6 \times 10^7 \, \text{V}) = 5.12 \times 10^{-12} \, \text{J} \][/tex]
### Step 2: Calculate the Velocity of the Particle
The kinetic energy of a particle moving with velocity [tex]\( v \)[/tex] and mass [tex]\( m \)[/tex] is given by:
[tex]\[ K.E. = \frac{1}{2} m v^2 \][/tex]
Solving for [tex]\( v \)[/tex], we get:
[tex]\[ v = \sqrt{\frac{2 \, K.E.}{m}} \][/tex]
Using the given mass [tex]\( m = 6.4 \times 10^{-27} \, \text{kg} \)[/tex] and kinetic energy [tex]\( K.E. = 5.12 \times 10^{-12} \, \text{J} \)[/tex],
[tex]\[ v = \sqrt{\frac{2 \times 5.12 \times 10^{-12} \, \text{J}}{6.4 \times 10^{-27} \, \text{kg}}} = \sqrt{1.6 \times 10^{15}} = 4.00 \times 10^7 \, \text{m/s} \][/tex]
### Step 3: Calculate the Magnetic Force
The magnetic force [tex]\( F \)[/tex] on a particle moving perpendicular to a magnetic field is given by:
[tex]\[ F = q \cdot v \cdot B \][/tex]
where:
- [tex]\( q \)[/tex] is the charge of the particle.
- [tex]\( v \)[/tex] is the velocity of the particle.
- [tex]\( B \)[/tex] is the magnetic field strength.
Using [tex]\( q = 3.20 \times 10^{-19} \, \text{C} \)[/tex], [tex]\( v = 4.00 \times 10^7 \, \text{m/s} \)[/tex], and [tex]\( B = 3.2 \, \text{T} \)[/tex],
[tex]\[ F = (3.20 \times 10^{-19} \, \text{C}) \times (4.00 \times 10^7 \, \text{m/s}) \times (3.2 \, \text{T}) = 4.096 \times 10^{-11} \, \text{N} \][/tex]
### Conclusion
The magnitude of the magnetic force exerted on the particle is:
[tex]\[ \boxed{4.09 \times 10^{-11} \, \text{N}} \][/tex]
This corresponds to the provided option [tex]\( 4.09 \times 10^{-11} \, \text{N} \)[/tex].
### Step 1: Calculate the Kinetic Energy Gained by the Particle
When a particle is accelerated from rest through a potential difference, the kinetic energy it gains is given by:
[tex]\[ K.E. = q \cdot V \][/tex]
where:
- [tex]\( q \)[/tex] is the charge of the particle.
- [tex]\( V \)[/tex] is the potential difference.
Here, the charge [tex]\( q = 3.20 \times 10^{-19} \, \text{C} \)[/tex] and the potential difference [tex]\( V = 1.6 \times 10^7 \, \text{V} \)[/tex].
[tex]\[ K.E. = (3.20 \times 10^{-19} \, \text{C}) \times (1.6 \times 10^7 \, \text{V}) = 5.12 \times 10^{-12} \, \text{J} \][/tex]
### Step 2: Calculate the Velocity of the Particle
The kinetic energy of a particle moving with velocity [tex]\( v \)[/tex] and mass [tex]\( m \)[/tex] is given by:
[tex]\[ K.E. = \frac{1}{2} m v^2 \][/tex]
Solving for [tex]\( v \)[/tex], we get:
[tex]\[ v = \sqrt{\frac{2 \, K.E.}{m}} \][/tex]
Using the given mass [tex]\( m = 6.4 \times 10^{-27} \, \text{kg} \)[/tex] and kinetic energy [tex]\( K.E. = 5.12 \times 10^{-12} \, \text{J} \)[/tex],
[tex]\[ v = \sqrt{\frac{2 \times 5.12 \times 10^{-12} \, \text{J}}{6.4 \times 10^{-27} \, \text{kg}}} = \sqrt{1.6 \times 10^{15}} = 4.00 \times 10^7 \, \text{m/s} \][/tex]
### Step 3: Calculate the Magnetic Force
The magnetic force [tex]\( F \)[/tex] on a particle moving perpendicular to a magnetic field is given by:
[tex]\[ F = q \cdot v \cdot B \][/tex]
where:
- [tex]\( q \)[/tex] is the charge of the particle.
- [tex]\( v \)[/tex] is the velocity of the particle.
- [tex]\( B \)[/tex] is the magnetic field strength.
Using [tex]\( q = 3.20 \times 10^{-19} \, \text{C} \)[/tex], [tex]\( v = 4.00 \times 10^7 \, \text{m/s} \)[/tex], and [tex]\( B = 3.2 \, \text{T} \)[/tex],
[tex]\[ F = (3.20 \times 10^{-19} \, \text{C}) \times (4.00 \times 10^7 \, \text{m/s}) \times (3.2 \, \text{T}) = 4.096 \times 10^{-11} \, \text{N} \][/tex]
### Conclusion
The magnitude of the magnetic force exerted on the particle is:
[tex]\[ \boxed{4.09 \times 10^{-11} \, \text{N}} \][/tex]
This corresponds to the provided option [tex]\( 4.09 \times 10^{-11} \, \text{N} \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.