Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the magnitude of the magnetic force exerted on the particle, we need to follow these steps:
### Step 1: Calculate the Kinetic Energy Gained by the Particle
When a particle is accelerated from rest through a potential difference, the kinetic energy it gains is given by:
[tex]\[ K.E. = q \cdot V \][/tex]
where:
- [tex]\( q \)[/tex] is the charge of the particle.
- [tex]\( V \)[/tex] is the potential difference.
Here, the charge [tex]\( q = 3.20 \times 10^{-19} \, \text{C} \)[/tex] and the potential difference [tex]\( V = 1.6 \times 10^7 \, \text{V} \)[/tex].
[tex]\[ K.E. = (3.20 \times 10^{-19} \, \text{C}) \times (1.6 \times 10^7 \, \text{V}) = 5.12 \times 10^{-12} \, \text{J} \][/tex]
### Step 2: Calculate the Velocity of the Particle
The kinetic energy of a particle moving with velocity [tex]\( v \)[/tex] and mass [tex]\( m \)[/tex] is given by:
[tex]\[ K.E. = \frac{1}{2} m v^2 \][/tex]
Solving for [tex]\( v \)[/tex], we get:
[tex]\[ v = \sqrt{\frac{2 \, K.E.}{m}} \][/tex]
Using the given mass [tex]\( m = 6.4 \times 10^{-27} \, \text{kg} \)[/tex] and kinetic energy [tex]\( K.E. = 5.12 \times 10^{-12} \, \text{J} \)[/tex],
[tex]\[ v = \sqrt{\frac{2 \times 5.12 \times 10^{-12} \, \text{J}}{6.4 \times 10^{-27} \, \text{kg}}} = \sqrt{1.6 \times 10^{15}} = 4.00 \times 10^7 \, \text{m/s} \][/tex]
### Step 3: Calculate the Magnetic Force
The magnetic force [tex]\( F \)[/tex] on a particle moving perpendicular to a magnetic field is given by:
[tex]\[ F = q \cdot v \cdot B \][/tex]
where:
- [tex]\( q \)[/tex] is the charge of the particle.
- [tex]\( v \)[/tex] is the velocity of the particle.
- [tex]\( B \)[/tex] is the magnetic field strength.
Using [tex]\( q = 3.20 \times 10^{-19} \, \text{C} \)[/tex], [tex]\( v = 4.00 \times 10^7 \, \text{m/s} \)[/tex], and [tex]\( B = 3.2 \, \text{T} \)[/tex],
[tex]\[ F = (3.20 \times 10^{-19} \, \text{C}) \times (4.00 \times 10^7 \, \text{m/s}) \times (3.2 \, \text{T}) = 4.096 \times 10^{-11} \, \text{N} \][/tex]
### Conclusion
The magnitude of the magnetic force exerted on the particle is:
[tex]\[ \boxed{4.09 \times 10^{-11} \, \text{N}} \][/tex]
This corresponds to the provided option [tex]\( 4.09 \times 10^{-11} \, \text{N} \)[/tex].
### Step 1: Calculate the Kinetic Energy Gained by the Particle
When a particle is accelerated from rest through a potential difference, the kinetic energy it gains is given by:
[tex]\[ K.E. = q \cdot V \][/tex]
where:
- [tex]\( q \)[/tex] is the charge of the particle.
- [tex]\( V \)[/tex] is the potential difference.
Here, the charge [tex]\( q = 3.20 \times 10^{-19} \, \text{C} \)[/tex] and the potential difference [tex]\( V = 1.6 \times 10^7 \, \text{V} \)[/tex].
[tex]\[ K.E. = (3.20 \times 10^{-19} \, \text{C}) \times (1.6 \times 10^7 \, \text{V}) = 5.12 \times 10^{-12} \, \text{J} \][/tex]
### Step 2: Calculate the Velocity of the Particle
The kinetic energy of a particle moving with velocity [tex]\( v \)[/tex] and mass [tex]\( m \)[/tex] is given by:
[tex]\[ K.E. = \frac{1}{2} m v^2 \][/tex]
Solving for [tex]\( v \)[/tex], we get:
[tex]\[ v = \sqrt{\frac{2 \, K.E.}{m}} \][/tex]
Using the given mass [tex]\( m = 6.4 \times 10^{-27} \, \text{kg} \)[/tex] and kinetic energy [tex]\( K.E. = 5.12 \times 10^{-12} \, \text{J} \)[/tex],
[tex]\[ v = \sqrt{\frac{2 \times 5.12 \times 10^{-12} \, \text{J}}{6.4 \times 10^{-27} \, \text{kg}}} = \sqrt{1.6 \times 10^{15}} = 4.00 \times 10^7 \, \text{m/s} \][/tex]
### Step 3: Calculate the Magnetic Force
The magnetic force [tex]\( F \)[/tex] on a particle moving perpendicular to a magnetic field is given by:
[tex]\[ F = q \cdot v \cdot B \][/tex]
where:
- [tex]\( q \)[/tex] is the charge of the particle.
- [tex]\( v \)[/tex] is the velocity of the particle.
- [tex]\( B \)[/tex] is the magnetic field strength.
Using [tex]\( q = 3.20 \times 10^{-19} \, \text{C} \)[/tex], [tex]\( v = 4.00 \times 10^7 \, \text{m/s} \)[/tex], and [tex]\( B = 3.2 \, \text{T} \)[/tex],
[tex]\[ F = (3.20 \times 10^{-19} \, \text{C}) \times (4.00 \times 10^7 \, \text{m/s}) \times (3.2 \, \text{T}) = 4.096 \times 10^{-11} \, \text{N} \][/tex]
### Conclusion
The magnitude of the magnetic force exerted on the particle is:
[tex]\[ \boxed{4.09 \times 10^{-11} \, \text{N}} \][/tex]
This corresponds to the provided option [tex]\( 4.09 \times 10^{-11} \, \text{N} \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.