At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the magnitude of the magnetic force exerted on the particle, we need to follow these steps:
### Step 1: Calculate the Kinetic Energy Gained by the Particle
When a particle is accelerated from rest through a potential difference, the kinetic energy it gains is given by:
[tex]\[ K.E. = q \cdot V \][/tex]
where:
- [tex]\( q \)[/tex] is the charge of the particle.
- [tex]\( V \)[/tex] is the potential difference.
Here, the charge [tex]\( q = 3.20 \times 10^{-19} \, \text{C} \)[/tex] and the potential difference [tex]\( V = 1.6 \times 10^7 \, \text{V} \)[/tex].
[tex]\[ K.E. = (3.20 \times 10^{-19} \, \text{C}) \times (1.6 \times 10^7 \, \text{V}) = 5.12 \times 10^{-12} \, \text{J} \][/tex]
### Step 2: Calculate the Velocity of the Particle
The kinetic energy of a particle moving with velocity [tex]\( v \)[/tex] and mass [tex]\( m \)[/tex] is given by:
[tex]\[ K.E. = \frac{1}{2} m v^2 \][/tex]
Solving for [tex]\( v \)[/tex], we get:
[tex]\[ v = \sqrt{\frac{2 \, K.E.}{m}} \][/tex]
Using the given mass [tex]\( m = 6.4 \times 10^{-27} \, \text{kg} \)[/tex] and kinetic energy [tex]\( K.E. = 5.12 \times 10^{-12} \, \text{J} \)[/tex],
[tex]\[ v = \sqrt{\frac{2 \times 5.12 \times 10^{-12} \, \text{J}}{6.4 \times 10^{-27} \, \text{kg}}} = \sqrt{1.6 \times 10^{15}} = 4.00 \times 10^7 \, \text{m/s} \][/tex]
### Step 3: Calculate the Magnetic Force
The magnetic force [tex]\( F \)[/tex] on a particle moving perpendicular to a magnetic field is given by:
[tex]\[ F = q \cdot v \cdot B \][/tex]
where:
- [tex]\( q \)[/tex] is the charge of the particle.
- [tex]\( v \)[/tex] is the velocity of the particle.
- [tex]\( B \)[/tex] is the magnetic field strength.
Using [tex]\( q = 3.20 \times 10^{-19} \, \text{C} \)[/tex], [tex]\( v = 4.00 \times 10^7 \, \text{m/s} \)[/tex], and [tex]\( B = 3.2 \, \text{T} \)[/tex],
[tex]\[ F = (3.20 \times 10^{-19} \, \text{C}) \times (4.00 \times 10^7 \, \text{m/s}) \times (3.2 \, \text{T}) = 4.096 \times 10^{-11} \, \text{N} \][/tex]
### Conclusion
The magnitude of the magnetic force exerted on the particle is:
[tex]\[ \boxed{4.09 \times 10^{-11} \, \text{N}} \][/tex]
This corresponds to the provided option [tex]\( 4.09 \times 10^{-11} \, \text{N} \)[/tex].
### Step 1: Calculate the Kinetic Energy Gained by the Particle
When a particle is accelerated from rest through a potential difference, the kinetic energy it gains is given by:
[tex]\[ K.E. = q \cdot V \][/tex]
where:
- [tex]\( q \)[/tex] is the charge of the particle.
- [tex]\( V \)[/tex] is the potential difference.
Here, the charge [tex]\( q = 3.20 \times 10^{-19} \, \text{C} \)[/tex] and the potential difference [tex]\( V = 1.6 \times 10^7 \, \text{V} \)[/tex].
[tex]\[ K.E. = (3.20 \times 10^{-19} \, \text{C}) \times (1.6 \times 10^7 \, \text{V}) = 5.12 \times 10^{-12} \, \text{J} \][/tex]
### Step 2: Calculate the Velocity of the Particle
The kinetic energy of a particle moving with velocity [tex]\( v \)[/tex] and mass [tex]\( m \)[/tex] is given by:
[tex]\[ K.E. = \frac{1}{2} m v^2 \][/tex]
Solving for [tex]\( v \)[/tex], we get:
[tex]\[ v = \sqrt{\frac{2 \, K.E.}{m}} \][/tex]
Using the given mass [tex]\( m = 6.4 \times 10^{-27} \, \text{kg} \)[/tex] and kinetic energy [tex]\( K.E. = 5.12 \times 10^{-12} \, \text{J} \)[/tex],
[tex]\[ v = \sqrt{\frac{2 \times 5.12 \times 10^{-12} \, \text{J}}{6.4 \times 10^{-27} \, \text{kg}}} = \sqrt{1.6 \times 10^{15}} = 4.00 \times 10^7 \, \text{m/s} \][/tex]
### Step 3: Calculate the Magnetic Force
The magnetic force [tex]\( F \)[/tex] on a particle moving perpendicular to a magnetic field is given by:
[tex]\[ F = q \cdot v \cdot B \][/tex]
where:
- [tex]\( q \)[/tex] is the charge of the particle.
- [tex]\( v \)[/tex] is the velocity of the particle.
- [tex]\( B \)[/tex] is the magnetic field strength.
Using [tex]\( q = 3.20 \times 10^{-19} \, \text{C} \)[/tex], [tex]\( v = 4.00 \times 10^7 \, \text{m/s} \)[/tex], and [tex]\( B = 3.2 \, \text{T} \)[/tex],
[tex]\[ F = (3.20 \times 10^{-19} \, \text{C}) \times (4.00 \times 10^7 \, \text{m/s}) \times (3.2 \, \text{T}) = 4.096 \times 10^{-11} \, \text{N} \][/tex]
### Conclusion
The magnitude of the magnetic force exerted on the particle is:
[tex]\[ \boxed{4.09 \times 10^{-11} \, \text{N}} \][/tex]
This corresponds to the provided option [tex]\( 4.09 \times 10^{-11} \, \text{N} \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.