Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the correct solution set, we need to understand the interval notation and relationships each set describes:
1. [tex]\(\{x \mid x > -1/3\}\)[/tex]:
- This set includes all real numbers greater than [tex]\(-1/3\)[/tex].
- In interval notation, this can be written as [tex]\(( -1/3, \infty )\)[/tex].
2. [tex]\(\{x \mid x < -3\}\)[/tex]:
- This set includes all real numbers less than [tex]\(-3\)[/tex].
- In interval notation, this can be written as [tex]\(( -\infty, -3)\)[/tex].
3. [tex]\(\{x \mid x < 3\}\)[/tex]:
- This set includes all real numbers less than [tex]\(3\)[/tex].
- In interval notation, this can be written as [tex]\(( -\infty, 3)\)[/tex].
4. [tex]\(\{x \mid x > -3\}\)[/tex]:
- This set includes all real numbers greater than [tex]\(-3\)[/tex].
- In interval notation, this can be written as [tex]\(( -3, \infty )\)[/tex].
We need to consider which of these solution sets correctly represents the condition we are evaluating. Based on the interval provided, which is [tex]\( \text{Interval.open}(-3, \infty) \)[/tex], the interval starts from [tex]\(-3\)[/tex], not inclusive, and extends to [tex]\(\infty\)[/tex].
The correct solution set that represents [tex]\( \text{Interval.open}(-3, \infty)\)[/tex] is:
[tex]\[ \{x \mid x > -3\} \][/tex]
Thus, the correct choice is:
[tex]\[ \{x \mid x > -3\} \][/tex]
1. [tex]\(\{x \mid x > -1/3\}\)[/tex]:
- This set includes all real numbers greater than [tex]\(-1/3\)[/tex].
- In interval notation, this can be written as [tex]\(( -1/3, \infty )\)[/tex].
2. [tex]\(\{x \mid x < -3\}\)[/tex]:
- This set includes all real numbers less than [tex]\(-3\)[/tex].
- In interval notation, this can be written as [tex]\(( -\infty, -3)\)[/tex].
3. [tex]\(\{x \mid x < 3\}\)[/tex]:
- This set includes all real numbers less than [tex]\(3\)[/tex].
- In interval notation, this can be written as [tex]\(( -\infty, 3)\)[/tex].
4. [tex]\(\{x \mid x > -3\}\)[/tex]:
- This set includes all real numbers greater than [tex]\(-3\)[/tex].
- In interval notation, this can be written as [tex]\(( -3, \infty )\)[/tex].
We need to consider which of these solution sets correctly represents the condition we are evaluating. Based on the interval provided, which is [tex]\( \text{Interval.open}(-3, \infty) \)[/tex], the interval starts from [tex]\(-3\)[/tex], not inclusive, and extends to [tex]\(\infty\)[/tex].
The correct solution set that represents [tex]\( \text{Interval.open}(-3, \infty)\)[/tex] is:
[tex]\[ \{x \mid x > -3\} \][/tex]
Thus, the correct choice is:
[tex]\[ \{x \mid x > -3\} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.