At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the rational inequality [tex]\(\frac{-4}{1-x} < 9\)[/tex], we will follow a set of steps to isolate the variable [tex]\(x\)[/tex] and determine the interval solution.
### Step-by-Step Solution:
1. Start with the given inequality:
[tex]\[ \frac{-4}{1-x} < 9 \][/tex]
2. Find the critical point where the denominator is zero:
[tex]\[ 1 - x = 0 \implies x = 1 \][/tex]
This tells us that [tex]\(x = 1\)[/tex] is a point of discontinuity and we should consider this point when solving the inequality.
3. Isolate the variable [tex]\(x\)[/tex]:
First, we need to resolve the inequality by manipulating it algebraically:
[tex]\[ \frac{-4}{1-x} < 9 \][/tex]
Multiply both sides by the expression [tex]\((1-x)\)[/tex], noting that the sign of the inequality will depend on the sign of [tex]\((1-x)\)[/tex]. This step requires consideration of two cases:
Case 1: [tex]\(1 - x > 0\)[/tex] (i.e., [tex]\(x < 1\)[/tex])
[tex]\[ -4 < 9(1 - x) \][/tex]
[tex]\[ -4 < 9 - 9x \][/tex]
Add [tex]\(9x\)[/tex] to both sides:
[tex]\[ 9x - 4 < 9 \][/tex]
Add 4 to both sides:
[tex]\[ 9x < 13 \][/tex]
Divide by 9:
[tex]\[ x < \frac{13}{9} \][/tex]
Case 2: [tex]\(1 - x < 0\)[/tex] (i.e., [tex]\(x > 1\)[/tex])
In this case, the inequality [tex]\(-4 < 9(1-x)\)[/tex] would be reversed if you multiply both sides by a negative number. This complicates the scenario and we should verify the feasible solution.
4. Combining the computed interval:
The first case gives us the interval:
[tex]\[ x < \frac{13}{9} \][/tex]
We also have to consider [tex]\(x \ne 1\)[/tex] due to the undefined nature at this point. This means:
[tex]\[ x \in (-\infty, 1) \cup (1, \frac{13}{9}) \][/tex]
5. Write the solution in interval notation:
The solution set for the given inequality [tex]\(\frac{-4}{1-x} < 9\)[/tex] is as follows in interval notation:
[tex]\[ (-\infty, 1) \cup (1, \frac{13}{9}) \][/tex]
Therefore, the solution set is:
[tex]\[ (-\infty, 1) \cup (1, \frac{13}{9}) \][/tex]
This interval notation represents all values [tex]\(x\)[/tex] where the given inequality holds true, excluding the point where the function is undefined.
### Step-by-Step Solution:
1. Start with the given inequality:
[tex]\[ \frac{-4}{1-x} < 9 \][/tex]
2. Find the critical point where the denominator is zero:
[tex]\[ 1 - x = 0 \implies x = 1 \][/tex]
This tells us that [tex]\(x = 1\)[/tex] is a point of discontinuity and we should consider this point when solving the inequality.
3. Isolate the variable [tex]\(x\)[/tex]:
First, we need to resolve the inequality by manipulating it algebraically:
[tex]\[ \frac{-4}{1-x} < 9 \][/tex]
Multiply both sides by the expression [tex]\((1-x)\)[/tex], noting that the sign of the inequality will depend on the sign of [tex]\((1-x)\)[/tex]. This step requires consideration of two cases:
Case 1: [tex]\(1 - x > 0\)[/tex] (i.e., [tex]\(x < 1\)[/tex])
[tex]\[ -4 < 9(1 - x) \][/tex]
[tex]\[ -4 < 9 - 9x \][/tex]
Add [tex]\(9x\)[/tex] to both sides:
[tex]\[ 9x - 4 < 9 \][/tex]
Add 4 to both sides:
[tex]\[ 9x < 13 \][/tex]
Divide by 9:
[tex]\[ x < \frac{13}{9} \][/tex]
Case 2: [tex]\(1 - x < 0\)[/tex] (i.e., [tex]\(x > 1\)[/tex])
In this case, the inequality [tex]\(-4 < 9(1-x)\)[/tex] would be reversed if you multiply both sides by a negative number. This complicates the scenario and we should verify the feasible solution.
4. Combining the computed interval:
The first case gives us the interval:
[tex]\[ x < \frac{13}{9} \][/tex]
We also have to consider [tex]\(x \ne 1\)[/tex] due to the undefined nature at this point. This means:
[tex]\[ x \in (-\infty, 1) \cup (1, \frac{13}{9}) \][/tex]
5. Write the solution in interval notation:
The solution set for the given inequality [tex]\(\frac{-4}{1-x} < 9\)[/tex] is as follows in interval notation:
[tex]\[ (-\infty, 1) \cup (1, \frac{13}{9}) \][/tex]
Therefore, the solution set is:
[tex]\[ (-\infty, 1) \cup (1, \frac{13}{9}) \][/tex]
This interval notation represents all values [tex]\(x\)[/tex] where the given inequality holds true, excluding the point where the function is undefined.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.