Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which of the given equations represents a line with a [tex]\(y\)[/tex]-intercept of 7, we need to analyze each of the equations individually.
### Given equations:
1. [tex]\(3x - \frac{y}{7} = 0\)[/tex]
2. [tex]\(3x - y - 7 = 0\)[/tex]
3. [tex]\(3x + y - 7 = 0\)[/tex]
#### Step-by-Step Analysis:
1. First Equation: [tex]\(3x - \frac{y}{7} = 0\)[/tex]
Let's rearrange this equation to solve for [tex]\(y\)[/tex]:
[tex]\[ 3x - \frac{y}{7} = 0 \implies y = 21x \][/tex]
In this form [tex]\(y = 21x\)[/tex], there is no constant term. This means the [tex]\(y\)[/tex]-intercept is 0, which does not match our requirement of a [tex]\(y\)[/tex]-intercept of 7. So, this equation cannot be correct.
2. Second Equation: [tex]\(3x - y - 7 = 0\)[/tex]
Let's rearrange this equation to solve for [tex]\(y\)[/tex]:
[tex]\[ 3x - y - 7 = 0 \implies y = 3x - 7 \][/tex]
In this slope-intercept form [tex]\(y = mx + c\)[/tex], the term [tex]\(c\)[/tex] gives us the [tex]\(y\)[/tex]-intercept. Here, the [tex]\(y\)[/tex]-intercept is -7, which does not match our requirement of 7. So, this equation cannot be correct either.
3. Third Equation: [tex]\(3x + y - 7 = 0\)[/tex]
Let's rearrange this equation to solve for [tex]\(y\)[/tex]:
[tex]\[ 3x + y - 7 = 0 \implies y = -3x + 7 \][/tex]
In this slope-intercept form [tex]\(y = mx + c\)[/tex], the term [tex]\(c\)[/tex] gives us the [tex]\(y\)[/tex]-intercept. Here, the [tex]\(y\)[/tex]-intercept is 7, which exactly matches our requirement.
### Conclusion:
The equation that correctly represents a line with a [tex]\(y\)[/tex]-intercept of 7 is:
[tex]\[ 3x + y - 7 = 0 \][/tex]
So, the correct equation fitting the given [tex]\(y\)[/tex]-intercept is the third equation.
### Given equations:
1. [tex]\(3x - \frac{y}{7} = 0\)[/tex]
2. [tex]\(3x - y - 7 = 0\)[/tex]
3. [tex]\(3x + y - 7 = 0\)[/tex]
#### Step-by-Step Analysis:
1. First Equation: [tex]\(3x - \frac{y}{7} = 0\)[/tex]
Let's rearrange this equation to solve for [tex]\(y\)[/tex]:
[tex]\[ 3x - \frac{y}{7} = 0 \implies y = 21x \][/tex]
In this form [tex]\(y = 21x\)[/tex], there is no constant term. This means the [tex]\(y\)[/tex]-intercept is 0, which does not match our requirement of a [tex]\(y\)[/tex]-intercept of 7. So, this equation cannot be correct.
2. Second Equation: [tex]\(3x - y - 7 = 0\)[/tex]
Let's rearrange this equation to solve for [tex]\(y\)[/tex]:
[tex]\[ 3x - y - 7 = 0 \implies y = 3x - 7 \][/tex]
In this slope-intercept form [tex]\(y = mx + c\)[/tex], the term [tex]\(c\)[/tex] gives us the [tex]\(y\)[/tex]-intercept. Here, the [tex]\(y\)[/tex]-intercept is -7, which does not match our requirement of 7. So, this equation cannot be correct either.
3. Third Equation: [tex]\(3x + y - 7 = 0\)[/tex]
Let's rearrange this equation to solve for [tex]\(y\)[/tex]:
[tex]\[ 3x + y - 7 = 0 \implies y = -3x + 7 \][/tex]
In this slope-intercept form [tex]\(y = mx + c\)[/tex], the term [tex]\(c\)[/tex] gives us the [tex]\(y\)[/tex]-intercept. Here, the [tex]\(y\)[/tex]-intercept is 7, which exactly matches our requirement.
### Conclusion:
The equation that correctly represents a line with a [tex]\(y\)[/tex]-intercept of 7 is:
[tex]\[ 3x + y - 7 = 0 \][/tex]
So, the correct equation fitting the given [tex]\(y\)[/tex]-intercept is the third equation.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.