Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which of the given equations represents a line with a [tex]\(y\)[/tex]-intercept of 7, we need to analyze each of the equations individually.
### Given equations:
1. [tex]\(3x - \frac{y}{7} = 0\)[/tex]
2. [tex]\(3x - y - 7 = 0\)[/tex]
3. [tex]\(3x + y - 7 = 0\)[/tex]
#### Step-by-Step Analysis:
1. First Equation: [tex]\(3x - \frac{y}{7} = 0\)[/tex]
Let's rearrange this equation to solve for [tex]\(y\)[/tex]:
[tex]\[ 3x - \frac{y}{7} = 0 \implies y = 21x \][/tex]
In this form [tex]\(y = 21x\)[/tex], there is no constant term. This means the [tex]\(y\)[/tex]-intercept is 0, which does not match our requirement of a [tex]\(y\)[/tex]-intercept of 7. So, this equation cannot be correct.
2. Second Equation: [tex]\(3x - y - 7 = 0\)[/tex]
Let's rearrange this equation to solve for [tex]\(y\)[/tex]:
[tex]\[ 3x - y - 7 = 0 \implies y = 3x - 7 \][/tex]
In this slope-intercept form [tex]\(y = mx + c\)[/tex], the term [tex]\(c\)[/tex] gives us the [tex]\(y\)[/tex]-intercept. Here, the [tex]\(y\)[/tex]-intercept is -7, which does not match our requirement of 7. So, this equation cannot be correct either.
3. Third Equation: [tex]\(3x + y - 7 = 0\)[/tex]
Let's rearrange this equation to solve for [tex]\(y\)[/tex]:
[tex]\[ 3x + y - 7 = 0 \implies y = -3x + 7 \][/tex]
In this slope-intercept form [tex]\(y = mx + c\)[/tex], the term [tex]\(c\)[/tex] gives us the [tex]\(y\)[/tex]-intercept. Here, the [tex]\(y\)[/tex]-intercept is 7, which exactly matches our requirement.
### Conclusion:
The equation that correctly represents a line with a [tex]\(y\)[/tex]-intercept of 7 is:
[tex]\[ 3x + y - 7 = 0 \][/tex]
So, the correct equation fitting the given [tex]\(y\)[/tex]-intercept is the third equation.
### Given equations:
1. [tex]\(3x - \frac{y}{7} = 0\)[/tex]
2. [tex]\(3x - y - 7 = 0\)[/tex]
3. [tex]\(3x + y - 7 = 0\)[/tex]
#### Step-by-Step Analysis:
1. First Equation: [tex]\(3x - \frac{y}{7} = 0\)[/tex]
Let's rearrange this equation to solve for [tex]\(y\)[/tex]:
[tex]\[ 3x - \frac{y}{7} = 0 \implies y = 21x \][/tex]
In this form [tex]\(y = 21x\)[/tex], there is no constant term. This means the [tex]\(y\)[/tex]-intercept is 0, which does not match our requirement of a [tex]\(y\)[/tex]-intercept of 7. So, this equation cannot be correct.
2. Second Equation: [tex]\(3x - y - 7 = 0\)[/tex]
Let's rearrange this equation to solve for [tex]\(y\)[/tex]:
[tex]\[ 3x - y - 7 = 0 \implies y = 3x - 7 \][/tex]
In this slope-intercept form [tex]\(y = mx + c\)[/tex], the term [tex]\(c\)[/tex] gives us the [tex]\(y\)[/tex]-intercept. Here, the [tex]\(y\)[/tex]-intercept is -7, which does not match our requirement of 7. So, this equation cannot be correct either.
3. Third Equation: [tex]\(3x + y - 7 = 0\)[/tex]
Let's rearrange this equation to solve for [tex]\(y\)[/tex]:
[tex]\[ 3x + y - 7 = 0 \implies y = -3x + 7 \][/tex]
In this slope-intercept form [tex]\(y = mx + c\)[/tex], the term [tex]\(c\)[/tex] gives us the [tex]\(y\)[/tex]-intercept. Here, the [tex]\(y\)[/tex]-intercept is 7, which exactly matches our requirement.
### Conclusion:
The equation that correctly represents a line with a [tex]\(y\)[/tex]-intercept of 7 is:
[tex]\[ 3x + y - 7 = 0 \][/tex]
So, the correct equation fitting the given [tex]\(y\)[/tex]-intercept is the third equation.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.