Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's solve the rational inequality [tex]\(\frac{-2}{1-x} < 8\)[/tex] step-by-step.
1. Rewrite the Inequality:
We start with:
[tex]\[ \frac{-2}{1-x} < 8 \][/tex]
2. Multiply Both Sides by the Denominator:
The inequality involves the fraction [tex]\(\frac{-2}{1-x}\)[/tex]. To eliminate the fraction, we multiply both sides of the inequality by [tex]\(1 - x\)[/tex]. Note that we must consider the sign of [tex]\(1 - x\)[/tex] because it affects the direction of the inequality.
- When [tex]\(1 - x > 0\)[/tex] (or [tex]\(x < 1\)[/tex]), we multiply both sides by [tex]\(1 - x\)[/tex], and the direction of the inequality remains the same:
[tex]\[ -2 < 8(1 - x) \][/tex]
- When [tex]\(1 - x < 0\)[/tex] (or [tex]\(x > 1\)[/tex]), we multiply both sides by [tex]\(1 - x\)[/tex], and the direction of the inequality reverses:
[tex]\[ -2 > 8(1 - x) \][/tex]
3. Consider Each Case Separately:
- Case 1: [tex]\(1 - x > 0\)[/tex] or [tex]\(x < 1\)[/tex]
[tex]\[ -2 < 8(1 - x) \][/tex]
Simplify the right side:
[tex]\[ -2 < 8 - 8x \][/tex]
Subtract 8 from both sides:
[tex]\[ -2 - 8 < -8x \][/tex]
Simplify further:
[tex]\[ -10 < -8x \][/tex]
Divide by -8 (remember to reverse the inequality sign):
[tex]\[ \frac{-10}{-8} > x \quad \text{or} \quad \frac{5}{4} > x \][/tex]
Therefore:
[tex]\[ x < \frac{5}{4} \][/tex]
- Case 2: [tex]\(1 - x < 0\)[/tex] or [tex]\(x > 1\)[/tex]
[tex]\[ -2 > 8(1 - x) \][/tex]
Simplify the right side:
[tex]\[ -2 > 8 - 8x \][/tex]
Subtract 8 from both sides:
[tex]\[ -2 - 8 > -8x \][/tex]
Simplify further:
[tex]\[ -10 > -8x \][/tex]
Divide by -8 (remember to reverse the inequality sign):
[tex]\[ \frac{-10}{-8} < x \quad \text{or} \quad \frac{5}{4} < x \][/tex]
Therefore:
[tex]\[ x > \frac{5}{4} \][/tex]
4. Combine the Results:
We have two cases:
[tex]\[ x < \frac{5}{4} \quad \text{and} \quad x > \frac{5}{4} \][/tex]
However, since [tex]\(x\)[/tex] cannot equal [tex]\(\frac{5}{4}\)[/tex] (it would make the denominator zero), we exclude [tex]\(\frac{5}{4}\)[/tex].
Therefore, combining the results gives us all real numbers but excluding [tex]\(x = \frac{5}{4}\)[/tex]:
[tex]\[ x \in (-\infty, \frac{5}{4}) \cup (\frac{5}{4}, \infty) \][/tex]
The Solution Set in Interval Notation:
[tex]\[ (-\infty, \frac{5}{4}) \cup (\frac{5}{4}, \infty) \][/tex]
1. Rewrite the Inequality:
We start with:
[tex]\[ \frac{-2}{1-x} < 8 \][/tex]
2. Multiply Both Sides by the Denominator:
The inequality involves the fraction [tex]\(\frac{-2}{1-x}\)[/tex]. To eliminate the fraction, we multiply both sides of the inequality by [tex]\(1 - x\)[/tex]. Note that we must consider the sign of [tex]\(1 - x\)[/tex] because it affects the direction of the inequality.
- When [tex]\(1 - x > 0\)[/tex] (or [tex]\(x < 1\)[/tex]), we multiply both sides by [tex]\(1 - x\)[/tex], and the direction of the inequality remains the same:
[tex]\[ -2 < 8(1 - x) \][/tex]
- When [tex]\(1 - x < 0\)[/tex] (or [tex]\(x > 1\)[/tex]), we multiply both sides by [tex]\(1 - x\)[/tex], and the direction of the inequality reverses:
[tex]\[ -2 > 8(1 - x) \][/tex]
3. Consider Each Case Separately:
- Case 1: [tex]\(1 - x > 0\)[/tex] or [tex]\(x < 1\)[/tex]
[tex]\[ -2 < 8(1 - x) \][/tex]
Simplify the right side:
[tex]\[ -2 < 8 - 8x \][/tex]
Subtract 8 from both sides:
[tex]\[ -2 - 8 < -8x \][/tex]
Simplify further:
[tex]\[ -10 < -8x \][/tex]
Divide by -8 (remember to reverse the inequality sign):
[tex]\[ \frac{-10}{-8} > x \quad \text{or} \quad \frac{5}{4} > x \][/tex]
Therefore:
[tex]\[ x < \frac{5}{4} \][/tex]
- Case 2: [tex]\(1 - x < 0\)[/tex] or [tex]\(x > 1\)[/tex]
[tex]\[ -2 > 8(1 - x) \][/tex]
Simplify the right side:
[tex]\[ -2 > 8 - 8x \][/tex]
Subtract 8 from both sides:
[tex]\[ -2 - 8 > -8x \][/tex]
Simplify further:
[tex]\[ -10 > -8x \][/tex]
Divide by -8 (remember to reverse the inequality sign):
[tex]\[ \frac{-10}{-8} < x \quad \text{or} \quad \frac{5}{4} < x \][/tex]
Therefore:
[tex]\[ x > \frac{5}{4} \][/tex]
4. Combine the Results:
We have two cases:
[tex]\[ x < \frac{5}{4} \quad \text{and} \quad x > \frac{5}{4} \][/tex]
However, since [tex]\(x\)[/tex] cannot equal [tex]\(\frac{5}{4}\)[/tex] (it would make the denominator zero), we exclude [tex]\(\frac{5}{4}\)[/tex].
Therefore, combining the results gives us all real numbers but excluding [tex]\(x = \frac{5}{4}\)[/tex]:
[tex]\[ x \in (-\infty, \frac{5}{4}) \cup (\frac{5}{4}, \infty) \][/tex]
The Solution Set in Interval Notation:
[tex]\[ (-\infty, \frac{5}{4}) \cup (\frac{5}{4}, \infty) \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.