Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Solve the rational inequality. Write the solution set in interval notation.

[tex]\[
\frac{-2}{1-x} \ \textless \ 8
\][/tex]

What is the solution set?

[tex]\(\square\)[/tex] (Type your answer in interval notation. Use integers or simplified fractions for any numbers in the expression.)


Sagot :

Let's solve the rational inequality [tex]\(\frac{-2}{1-x} < 8\)[/tex] step-by-step.

1. Rewrite the Inequality:
We start with:
[tex]\[ \frac{-2}{1-x} < 8 \][/tex]

2. Multiply Both Sides by the Denominator:
The inequality involves the fraction [tex]\(\frac{-2}{1-x}\)[/tex]. To eliminate the fraction, we multiply both sides of the inequality by [tex]\(1 - x\)[/tex]. Note that we must consider the sign of [tex]\(1 - x\)[/tex] because it affects the direction of the inequality.

- When [tex]\(1 - x > 0\)[/tex] (or [tex]\(x < 1\)[/tex]), we multiply both sides by [tex]\(1 - x\)[/tex], and the direction of the inequality remains the same:
[tex]\[ -2 < 8(1 - x) \][/tex]
- When [tex]\(1 - x < 0\)[/tex] (or [tex]\(x > 1\)[/tex]), we multiply both sides by [tex]\(1 - x\)[/tex], and the direction of the inequality reverses:
[tex]\[ -2 > 8(1 - x) \][/tex]

3. Consider Each Case Separately:

- Case 1: [tex]\(1 - x > 0\)[/tex] or [tex]\(x < 1\)[/tex]

[tex]\[ -2 < 8(1 - x) \][/tex]
Simplify the right side:
[tex]\[ -2 < 8 - 8x \][/tex]
Subtract 8 from both sides:
[tex]\[ -2 - 8 < -8x \][/tex]
Simplify further:
[tex]\[ -10 < -8x \][/tex]
Divide by -8 (remember to reverse the inequality sign):
[tex]\[ \frac{-10}{-8} > x \quad \text{or} \quad \frac{5}{4} > x \][/tex]
Therefore:
[tex]\[ x < \frac{5}{4} \][/tex]

- Case 2: [tex]\(1 - x < 0\)[/tex] or [tex]\(x > 1\)[/tex]

[tex]\[ -2 > 8(1 - x) \][/tex]
Simplify the right side:
[tex]\[ -2 > 8 - 8x \][/tex]
Subtract 8 from both sides:
[tex]\[ -2 - 8 > -8x \][/tex]
Simplify further:
[tex]\[ -10 > -8x \][/tex]
Divide by -8 (remember to reverse the inequality sign):
[tex]\[ \frac{-10}{-8} < x \quad \text{or} \quad \frac{5}{4} < x \][/tex]
Therefore:
[tex]\[ x > \frac{5}{4} \][/tex]

4. Combine the Results:
We have two cases:
[tex]\[ x < \frac{5}{4} \quad \text{and} \quad x > \frac{5}{4} \][/tex]
However, since [tex]\(x\)[/tex] cannot equal [tex]\(\frac{5}{4}\)[/tex] (it would make the denominator zero), we exclude [tex]\(\frac{5}{4}\)[/tex].

Therefore, combining the results gives us all real numbers but excluding [tex]\(x = \frac{5}{4}\)[/tex]:
[tex]\[ x \in (-\infty, \frac{5}{4}) \cup (\frac{5}{4}, \infty) \][/tex]

The Solution Set in Interval Notation:
[tex]\[ (-\infty, \frac{5}{4}) \cup (\frac{5}{4}, \infty) \][/tex]