Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the problem, we need to compare the volumes of the cube and the pyramids with a common base. Let's begin by identifying the essential properties and calculating the volumes step-by-step.
1. Volume of the Cube:
- The cube has a height [tex]\( h \)[/tex], and since it is a cube, all sides are equal to [tex]\( h \)[/tex].
- The volume [tex]\( V_{cube} \)[/tex] of the cube is given by:
[tex]\[ V_{cube} = h^3 \][/tex]
2. Volume of a Square Pyramid:
- The volume [tex]\( V_{pyramid} \)[/tex] of a square pyramid with a base area [tex]\( A \)[/tex] and height [tex]\( H \)[/tex] is given by:
[tex]\[ V_{pyramid} = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
- Since the base of each pyramid is the same as the base of the cube and assuming the base area (A) is [tex]\( h^2 \)[/tex], we have:
[tex]\[ V_{pyramid} = \frac{1}{3} \times h^2 \times H_{pyramid} \][/tex]
3. Equating Volumes:
- We are given that six identical pyramids fill the same volume as the cube. Thus:
[tex]\[ 6 \times V_{pyramid} = V_{cube} \][/tex]
- Substituting the volumes, we get:
[tex]\[ 6 \times \left(\frac{1}{3} \times h^2 \times H_{pyramid}\right) = h^3 \][/tex]
- Simplifying:
[tex]\[ 2 \times h^2 \times H_{pyramid} = h^3 \][/tex]
- Solving for [tex]\( H_{pyramid} \)[/tex]:
[tex]\[ 2 \times h^2 \times H_{pyramid} = h^3 \][/tex]
[tex]\[ H_{pyramid} = \frac{h^3}{2 \times h^2} \][/tex]
[tex]\[ H_{pyramid} = \frac{h}{2} \][/tex]
4. Choosing Correct Options:
- The given options are:
[tex]\[ \text{The height of each pyramid is } \frac{1}{2} h \text{ units.} \][/tex]
[tex]\[ The height of each pyramid is \frac{1}{3} h \text{ units.} \][/tex]
[tex]\[ The height of each pyramid is \frac{1}{6} h \text{ units.} \][/tex]
[tex]\[ The height of each pyramid is h \text{ units.} \][/tex]
5. Conclusion:
- From the calculations, the height of each pyramid is found to be [tex]\( \frac{1}{3} h \)[/tex] units.
- Therefore, the correct answer is:
[tex]\[ The height of each pyramid is \frac{1}{3} h \text{ units.} \][/tex]
1. Volume of the Cube:
- The cube has a height [tex]\( h \)[/tex], and since it is a cube, all sides are equal to [tex]\( h \)[/tex].
- The volume [tex]\( V_{cube} \)[/tex] of the cube is given by:
[tex]\[ V_{cube} = h^3 \][/tex]
2. Volume of a Square Pyramid:
- The volume [tex]\( V_{pyramid} \)[/tex] of a square pyramid with a base area [tex]\( A \)[/tex] and height [tex]\( H \)[/tex] is given by:
[tex]\[ V_{pyramid} = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
- Since the base of each pyramid is the same as the base of the cube and assuming the base area (A) is [tex]\( h^2 \)[/tex], we have:
[tex]\[ V_{pyramid} = \frac{1}{3} \times h^2 \times H_{pyramid} \][/tex]
3. Equating Volumes:
- We are given that six identical pyramids fill the same volume as the cube. Thus:
[tex]\[ 6 \times V_{pyramid} = V_{cube} \][/tex]
- Substituting the volumes, we get:
[tex]\[ 6 \times \left(\frac{1}{3} \times h^2 \times H_{pyramid}\right) = h^3 \][/tex]
- Simplifying:
[tex]\[ 2 \times h^2 \times H_{pyramid} = h^3 \][/tex]
- Solving for [tex]\( H_{pyramid} \)[/tex]:
[tex]\[ 2 \times h^2 \times H_{pyramid} = h^3 \][/tex]
[tex]\[ H_{pyramid} = \frac{h^3}{2 \times h^2} \][/tex]
[tex]\[ H_{pyramid} = \frac{h}{2} \][/tex]
4. Choosing Correct Options:
- The given options are:
[tex]\[ \text{The height of each pyramid is } \frac{1}{2} h \text{ units.} \][/tex]
[tex]\[ The height of each pyramid is \frac{1}{3} h \text{ units.} \][/tex]
[tex]\[ The height of each pyramid is \frac{1}{6} h \text{ units.} \][/tex]
[tex]\[ The height of each pyramid is h \text{ units.} \][/tex]
5. Conclusion:
- From the calculations, the height of each pyramid is found to be [tex]\( \frac{1}{3} h \)[/tex] units.
- Therefore, the correct answer is:
[tex]\[ The height of each pyramid is \frac{1}{3} h \text{ units.} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.