Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the antiderivatives of the function [tex]\( f(y) = -\frac{28}{y^{29}} \)[/tex], let's proceed as follows:
1. Identify the function:
[tex]\[ f(y) = -\frac{28}{y^{29}} \][/tex]
2. Rewrite using exponents:
We can rewrite the function with a negative exponent for ease of integration:
[tex]\[ f(y) = -28 y^{-29} \][/tex]
3. Apply the power rule for integration:
The power rule for integration states that if [tex]\( f(y) = y^n \)[/tex], then the antiderivative [tex]\( F(y) \)[/tex] is given by:
[tex]\[ \int y^n \, dy = \frac{y^{n+1}}{n+1} + C \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
4. Integrate the function:
In our case, [tex]\( n = -29 \)[/tex]. Applying the power rule:
[tex]\[ \int -28 y^{-29} \, dy = -28 \int y^{-29} \, dy \][/tex]
[tex]\[ = -28 \left( \frac{y^{-29+1}}{-29+1} \right) + C \][/tex]
Simplify the exponent and the denominator:
[tex]\[ = -28 \left( \frac{y^{-28}}{-28} \right) + C \][/tex]
[tex]\[ = -28 \left( \frac{y^{-28}}{-28} \right) + C \][/tex]
5. Simplify the expression:
The [tex]\(-28\)[/tex] in the numerator and denominator cancels out:
[tex]\[ = y^{-28} + C \][/tex]
Therefore, the antiderivatives of [tex]\( f(y) = -\frac{28}{y^{29}} \)[/tex] are:
[tex]\[ F(y) = y^{-28} + C \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
1. Identify the function:
[tex]\[ f(y) = -\frac{28}{y^{29}} \][/tex]
2. Rewrite using exponents:
We can rewrite the function with a negative exponent for ease of integration:
[tex]\[ f(y) = -28 y^{-29} \][/tex]
3. Apply the power rule for integration:
The power rule for integration states that if [tex]\( f(y) = y^n \)[/tex], then the antiderivative [tex]\( F(y) \)[/tex] is given by:
[tex]\[ \int y^n \, dy = \frac{y^{n+1}}{n+1} + C \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
4. Integrate the function:
In our case, [tex]\( n = -29 \)[/tex]. Applying the power rule:
[tex]\[ \int -28 y^{-29} \, dy = -28 \int y^{-29} \, dy \][/tex]
[tex]\[ = -28 \left( \frac{y^{-29+1}}{-29+1} \right) + C \][/tex]
Simplify the exponent and the denominator:
[tex]\[ = -28 \left( \frac{y^{-28}}{-28} \right) + C \][/tex]
[tex]\[ = -28 \left( \frac{y^{-28}}{-28} \right) + C \][/tex]
5. Simplify the expression:
The [tex]\(-28\)[/tex] in the numerator and denominator cancels out:
[tex]\[ = y^{-28} + C \][/tex]
Therefore, the antiderivatives of [tex]\( f(y) = -\frac{28}{y^{29}} \)[/tex] are:
[tex]\[ F(y) = y^{-28} + C \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.