At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the equation [tex]\(\sqrt{x+3} - \sqrt{2x-1} = -2\)[/tex], we can arrange the steps in the following order:
1. Simplify to obtain the final radical term on one side of the equation:
[tex]\[\sqrt{x + 3} = \sqrt{2x - 1} - 2\][/tex]
2. Raise both sides of the equation to the power of 2:
[tex]\[(\sqrt{x + 3})^2 = (\sqrt(2x - 1) - 2)^2\][/tex]
This results in:
[tex]\[x + 3 = (2x - 1) - 4\sqrt{2x - 1} + 4\][/tex]
3. Simplify to get a quadratic equation:
[tex]\[x + 3 = 2x - 1 - 4\sqrt{2x - 1} + 4\][/tex]
[tex]\[x + 3 = 2x + 3 - 4\sqrt{2x - 1}\][/tex]
[tex]\[0 = x - 4\sqrt{2x - 1}\][/tex]
4. Isolate the remaining radical term (though this step isn't numbered, it logically follows the simplification step):
[tex]\[4\sqrt{2x - 1} = x\][/tex]
[tex]\[\sqrt{2x - 1} = \frac{x}{4}\][/tex]
5. Raise both sides of the equation to the power of 2 again:
[tex]\[(\sqrt(2x - 1))^2 = \left(\frac{x}{4}\right)^2\][/tex]
This results in:
[tex]\[2x - 1 = \frac{x^2}{16}\][/tex]
6. Simplify to get the final quadratic equation and use the quadratic formula to find the values of [tex]\(x\)[/tex]:
[tex]\[32x - 16 = x^2\][/tex]
[tex]\[x^2 - 32x + 16 = 0\][/tex]
7. Apply the Zero Product Rule (Use the quadratic formula to solve the quadratic equation):
[tex]\[x = \frac{32 \pm \sqrt{32^2 - 4 \cdot 1 \cdot 16}}{2 \cdot 1}\][/tex]
This results in the solutions:
[tex]\[x_1 \approx 31.491933384829668\][/tex]
[tex]\[x_2 \approx 0.5080666151703319\][/tex]
Upon checking these solutions in the original equation, we find that only [tex]\(x \approx 31.491933384829668\)[/tex] is valid, so the final valid solution is:
[tex]\[x \approx 31.491933384829668\][/tex]
To rearrange the steps as blocks:
- Simplify to obtain the final radical term on one side of the equation.
- Raise both sides of the equation to the power of 2.
- Simplify to get a quadratic equation.
- Raise both sides of the equation to the power of 2 again.
- Use the quadratic formula to find the values of [tex]\(x\)[/tex].
- Apply the Zero Product Rule.
1. Simplify to obtain the final radical term on one side of the equation:
[tex]\[\sqrt{x + 3} = \sqrt{2x - 1} - 2\][/tex]
2. Raise both sides of the equation to the power of 2:
[tex]\[(\sqrt{x + 3})^2 = (\sqrt(2x - 1) - 2)^2\][/tex]
This results in:
[tex]\[x + 3 = (2x - 1) - 4\sqrt{2x - 1} + 4\][/tex]
3. Simplify to get a quadratic equation:
[tex]\[x + 3 = 2x - 1 - 4\sqrt{2x - 1} + 4\][/tex]
[tex]\[x + 3 = 2x + 3 - 4\sqrt{2x - 1}\][/tex]
[tex]\[0 = x - 4\sqrt{2x - 1}\][/tex]
4. Isolate the remaining radical term (though this step isn't numbered, it logically follows the simplification step):
[tex]\[4\sqrt{2x - 1} = x\][/tex]
[tex]\[\sqrt{2x - 1} = \frac{x}{4}\][/tex]
5. Raise both sides of the equation to the power of 2 again:
[tex]\[(\sqrt(2x - 1))^2 = \left(\frac{x}{4}\right)^2\][/tex]
This results in:
[tex]\[2x - 1 = \frac{x^2}{16}\][/tex]
6. Simplify to get the final quadratic equation and use the quadratic formula to find the values of [tex]\(x\)[/tex]:
[tex]\[32x - 16 = x^2\][/tex]
[tex]\[x^2 - 32x + 16 = 0\][/tex]
7. Apply the Zero Product Rule (Use the quadratic formula to solve the quadratic equation):
[tex]\[x = \frac{32 \pm \sqrt{32^2 - 4 \cdot 1 \cdot 16}}{2 \cdot 1}\][/tex]
This results in the solutions:
[tex]\[x_1 \approx 31.491933384829668\][/tex]
[tex]\[x_2 \approx 0.5080666151703319\][/tex]
Upon checking these solutions in the original equation, we find that only [tex]\(x \approx 31.491933384829668\)[/tex] is valid, so the final valid solution is:
[tex]\[x \approx 31.491933384829668\][/tex]
To rearrange the steps as blocks:
- Simplify to obtain the final radical term on one side of the equation.
- Raise both sides of the equation to the power of 2.
- Simplify to get a quadratic equation.
- Raise both sides of the equation to the power of 2 again.
- Use the quadratic formula to find the values of [tex]\(x\)[/tex].
- Apply the Zero Product Rule.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.