Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the equation [tex]\(\sqrt{x+3} - \sqrt{2x-1} = -2\)[/tex], we can arrange the steps in the following order:
1. Simplify to obtain the final radical term on one side of the equation:
[tex]\[\sqrt{x + 3} = \sqrt{2x - 1} - 2\][/tex]
2. Raise both sides of the equation to the power of 2:
[tex]\[(\sqrt{x + 3})^2 = (\sqrt(2x - 1) - 2)^2\][/tex]
This results in:
[tex]\[x + 3 = (2x - 1) - 4\sqrt{2x - 1} + 4\][/tex]
3. Simplify to get a quadratic equation:
[tex]\[x + 3 = 2x - 1 - 4\sqrt{2x - 1} + 4\][/tex]
[tex]\[x + 3 = 2x + 3 - 4\sqrt{2x - 1}\][/tex]
[tex]\[0 = x - 4\sqrt{2x - 1}\][/tex]
4. Isolate the remaining radical term (though this step isn't numbered, it logically follows the simplification step):
[tex]\[4\sqrt{2x - 1} = x\][/tex]
[tex]\[\sqrt{2x - 1} = \frac{x}{4}\][/tex]
5. Raise both sides of the equation to the power of 2 again:
[tex]\[(\sqrt(2x - 1))^2 = \left(\frac{x}{4}\right)^2\][/tex]
This results in:
[tex]\[2x - 1 = \frac{x^2}{16}\][/tex]
6. Simplify to get the final quadratic equation and use the quadratic formula to find the values of [tex]\(x\)[/tex]:
[tex]\[32x - 16 = x^2\][/tex]
[tex]\[x^2 - 32x + 16 = 0\][/tex]
7. Apply the Zero Product Rule (Use the quadratic formula to solve the quadratic equation):
[tex]\[x = \frac{32 \pm \sqrt{32^2 - 4 \cdot 1 \cdot 16}}{2 \cdot 1}\][/tex]
This results in the solutions:
[tex]\[x_1 \approx 31.491933384829668\][/tex]
[tex]\[x_2 \approx 0.5080666151703319\][/tex]
Upon checking these solutions in the original equation, we find that only [tex]\(x \approx 31.491933384829668\)[/tex] is valid, so the final valid solution is:
[tex]\[x \approx 31.491933384829668\][/tex]
To rearrange the steps as blocks:
- Simplify to obtain the final radical term on one side of the equation.
- Raise both sides of the equation to the power of 2.
- Simplify to get a quadratic equation.
- Raise both sides of the equation to the power of 2 again.
- Use the quadratic formula to find the values of [tex]\(x\)[/tex].
- Apply the Zero Product Rule.
1. Simplify to obtain the final radical term on one side of the equation:
[tex]\[\sqrt{x + 3} = \sqrt{2x - 1} - 2\][/tex]
2. Raise both sides of the equation to the power of 2:
[tex]\[(\sqrt{x + 3})^2 = (\sqrt(2x - 1) - 2)^2\][/tex]
This results in:
[tex]\[x + 3 = (2x - 1) - 4\sqrt{2x - 1} + 4\][/tex]
3. Simplify to get a quadratic equation:
[tex]\[x + 3 = 2x - 1 - 4\sqrt{2x - 1} + 4\][/tex]
[tex]\[x + 3 = 2x + 3 - 4\sqrt{2x - 1}\][/tex]
[tex]\[0 = x - 4\sqrt{2x - 1}\][/tex]
4. Isolate the remaining radical term (though this step isn't numbered, it logically follows the simplification step):
[tex]\[4\sqrt{2x - 1} = x\][/tex]
[tex]\[\sqrt{2x - 1} = \frac{x}{4}\][/tex]
5. Raise both sides of the equation to the power of 2 again:
[tex]\[(\sqrt(2x - 1))^2 = \left(\frac{x}{4}\right)^2\][/tex]
This results in:
[tex]\[2x - 1 = \frac{x^2}{16}\][/tex]
6. Simplify to get the final quadratic equation and use the quadratic formula to find the values of [tex]\(x\)[/tex]:
[tex]\[32x - 16 = x^2\][/tex]
[tex]\[x^2 - 32x + 16 = 0\][/tex]
7. Apply the Zero Product Rule (Use the quadratic formula to solve the quadratic equation):
[tex]\[x = \frac{32 \pm \sqrt{32^2 - 4 \cdot 1 \cdot 16}}{2 \cdot 1}\][/tex]
This results in the solutions:
[tex]\[x_1 \approx 31.491933384829668\][/tex]
[tex]\[x_2 \approx 0.5080666151703319\][/tex]
Upon checking these solutions in the original equation, we find that only [tex]\(x \approx 31.491933384829668\)[/tex] is valid, so the final valid solution is:
[tex]\[x \approx 31.491933384829668\][/tex]
To rearrange the steps as blocks:
- Simplify to obtain the final radical term on one side of the equation.
- Raise both sides of the equation to the power of 2.
- Simplify to get a quadratic equation.
- Raise both sides of the equation to the power of 2 again.
- Use the quadratic formula to find the values of [tex]\(x\)[/tex].
- Apply the Zero Product Rule.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.