At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To simplify the expression [tex]\(\sqrt{8x^3 + 24x^2 + 18x}\)[/tex], let's follow these steps:
1. Factor the expression inside the square root:
[tex]\[ 8x^3 + 24x^2 + 18x \][/tex]
We start by factoring out the greatest common factor (GCF) which is [tex]\(2x\)[/tex]:
[tex]\[ 8x^3 + 24x^2 + 18x = 2x(4x^2 + 12x + 9) \][/tex]
2. Further factor the quadratic expression:
We focus on factoring the quadratic [tex]\(4x^2 + 12x + 9\)[/tex]:
[tex]\[ 4x^2 + 12x + 9 = (2x + 3)^2 \][/tex]
Therefore:
[tex]\[ 8x^3 + 24x^2 + 18x = 2x(2x + 3)^2 \][/tex]
3. Take the square root of both sides:
[tex]\[ \sqrt{8x^3 + 24x^2 + 18x} = \sqrt{2x(2x + 3)^2} \][/tex]
4. Simplify the square root expression:
We know that the square root of a product equals the product of the square roots, hence:
[tex]\[ \sqrt{2x(2x + 3)^2} = \sqrt{2} \cdot \sqrt{x} \cdot \sqrt{(2x + 3)^2} \][/tex]
Since [tex]\(\sqrt{(2x + 3)^2} = |2x + 3|\)[/tex], we get:
[tex]\[ \sqrt{2} \cdot \sqrt{x} \cdot |2x + 3| \][/tex]
If [tex]\(2x + 3\)[/tex] is non-negative, then [tex]\(|2x + 3| = 2x + 3\)[/tex], and if [tex]\(2x + 3\)[/tex] is negative, [tex]\(|2x + 3| = -(2x + 3)\)[/tex]. Usually, in the context of real numbers, we use the positive root and include the [tex]\(\pm\)[/tex] sign to cover both cases.
Thus:
[tex]\[ \sqrt{2} \cdot \sqrt{x} \cdot |2x + 3| = \pm(2x + 3)\sqrt{2x} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\pm(2x + 3)\sqrt{2x}} \][/tex]
Which corresponds to option A: [tex]\(\pm(2x + 3) \sqrt{2 x}\)[/tex].
1. Factor the expression inside the square root:
[tex]\[ 8x^3 + 24x^2 + 18x \][/tex]
We start by factoring out the greatest common factor (GCF) which is [tex]\(2x\)[/tex]:
[tex]\[ 8x^3 + 24x^2 + 18x = 2x(4x^2 + 12x + 9) \][/tex]
2. Further factor the quadratic expression:
We focus on factoring the quadratic [tex]\(4x^2 + 12x + 9\)[/tex]:
[tex]\[ 4x^2 + 12x + 9 = (2x + 3)^2 \][/tex]
Therefore:
[tex]\[ 8x^3 + 24x^2 + 18x = 2x(2x + 3)^2 \][/tex]
3. Take the square root of both sides:
[tex]\[ \sqrt{8x^3 + 24x^2 + 18x} = \sqrt{2x(2x + 3)^2} \][/tex]
4. Simplify the square root expression:
We know that the square root of a product equals the product of the square roots, hence:
[tex]\[ \sqrt{2x(2x + 3)^2} = \sqrt{2} \cdot \sqrt{x} \cdot \sqrt{(2x + 3)^2} \][/tex]
Since [tex]\(\sqrt{(2x + 3)^2} = |2x + 3|\)[/tex], we get:
[tex]\[ \sqrt{2} \cdot \sqrt{x} \cdot |2x + 3| \][/tex]
If [tex]\(2x + 3\)[/tex] is non-negative, then [tex]\(|2x + 3| = 2x + 3\)[/tex], and if [tex]\(2x + 3\)[/tex] is negative, [tex]\(|2x + 3| = -(2x + 3)\)[/tex]. Usually, in the context of real numbers, we use the positive root and include the [tex]\(\pm\)[/tex] sign to cover both cases.
Thus:
[tex]\[ \sqrt{2} \cdot \sqrt{x} \cdot |2x + 3| = \pm(2x + 3)\sqrt{2x} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\pm(2x + 3)\sqrt{2x}} \][/tex]
Which corresponds to option A: [tex]\(\pm(2x + 3) \sqrt{2 x}\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.