Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

A solid oblique pyramid has a square base with an edge length of 2 cm. Angle [tex]\( BAC \)[/tex] measures [tex]\( 45^{\circ} \)[/tex].

What is the volume of the pyramid?

A. [tex]\(2.4 \, \text{cm}^3\)[/tex]

B. [tex]\(3.6 \, \text{cm}^3\)[/tex]

C. [tex]\(4.8 \, \text{cm}^3\)[/tex]

D. [tex]\(7.2 \, \text{cm}^3\)[/tex]

Sagot :

To find the volume of the oblique pyramid with a square base, an edge length of 2 cm, and an angle BAC of [tex]\(45^{\circ}\)[/tex], we need to follow these steps:

1. Understand the Geometry:
- The base of the pyramid is a square with each side measuring 2 cm.
- The angle BAC, which is the angle between the apex (vertex A) of the pyramid and one side of the base (side BC), is [tex]\(45^{\circ}\)[/tex].

2. Calculate the Height:
- The height of the pyramid can be inferred using trigonometry. Since angle BAC is [tex]\(45^{\circ}\)[/tex], tan(45°) = 1.
- We can use this angle to determine the height (h) from the apex to the center of the base. If we drop a perpendicular from the apex to the center of the base, this creates a right triangle where:
[tex]\[ \tan(45^{\circ}) = \frac{\text{height}}{\text{half of base edge}} \][/tex]
Since [tex]\(\tan(45^{\circ}) = 1\)[/tex]:
[tex]\[ 1 = \frac{h}{1 cm} \][/tex]
Therefore,
[tex]\[ h = 1 \][/tex]

3. Calculate the Area of the Base:
- The base is a square with each side of 2 cm:
[tex]\[ \text{Area of the base} = \text{side}^2 = 2^2 = 4 \, \text{cm}^2 \][/tex]

4. Calculate the Volume:
- The volume (V) of a pyramid is given by:
[tex]\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
- Substituting the known values:
[tex]\[ V = \frac{1}{3} \times 4 \times 1 = \frac{4}{3} \][/tex]
- Therefore,
[tex]\[ V \approx 1.33 \, \text{cm}^3 \][/tex]

Given the options provided ([tex]\(2.4 \, \text{cm}^3\)[/tex], [tex]\(3.6 \, \text{cm}^3\)[/tex], [tex]\(4.8 \, \text{cm}^3\)[/tex], [tex]\(7.2 \, \text{cm}^3\)[/tex]), the correct approximate volume of the pyramid is [tex]\(1.33 \, \text{cm}^3\)[/tex].

Since none of the given options match the exact volume of [tex]\( 1.33 \, \text{cm}^3 \)[/tex], it appears there might be a mistake in the provided options or a rounding issue. The correct volume based on our calculations is [tex]\( \boxed{1.33 \, \text{cm}^3} \)[/tex].