Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the inequality
[tex]\[ \frac{-4j - 2}{2} \leq 4j + 5, \][/tex]
we will follow these steps:
1. Simplify the left-hand side of the inequality:
[tex]\[ \frac{-4j - 2}{2}. \][/tex]
Divide each term in the numerator by 2:
[tex]\[ \frac{-4j}{2} + \frac{-2}{2} = -2j - 1. \][/tex]
This simplifies the inequality to:
[tex]\[ -2j - 1 \leq 4j + 5. \][/tex]
2. Isolate [tex]\( j \)[/tex] on one side:
To isolate [tex]\( j \)[/tex], we need to get all terms involving [tex]\( j \)[/tex] on one side and constants on the other side. Start by adding [tex]\( 2j \)[/tex] to both sides to get rid of the [tex]\( -2j \)[/tex] term on the left:
[tex]\[ -2j - 1 + 2j \leq 4j + 5 + 2j. \][/tex]
Simplifying this, we get:
[tex]\[ -1 \leq 6j + 5. \][/tex]
3. Move the constant term to the other side:
Subtract 5 from both sides to isolate the [tex]\( j \)[/tex]-term:
[tex]\[ -1 - 5 \leq 6j. \][/tex]
Simplifying this, we get:
[tex]\[ -6 \leq 6j. \][/tex]
4. Solve for [tex]\( j \)[/tex]:
Divide both sides by 6 to isolate [tex]\( j \)[/tex]:
[tex]\[ \frac{-6}{6} \leq j. \][/tex]
Simplifying this, we get:
[tex]\[ -1 \leq j. \][/tex]
This means [tex]\( j \)[/tex] must be greater than or equal to [tex]\(-1\)[/tex].
The solution can be written in interval notation as:
[tex]\[ j \in [-1, \infty). \][/tex]
Thus, the solution to the inequality is
[tex]\[ \boxed{-1 \leq j < \infty}. \][/tex]
[tex]\[ \frac{-4j - 2}{2} \leq 4j + 5, \][/tex]
we will follow these steps:
1. Simplify the left-hand side of the inequality:
[tex]\[ \frac{-4j - 2}{2}. \][/tex]
Divide each term in the numerator by 2:
[tex]\[ \frac{-4j}{2} + \frac{-2}{2} = -2j - 1. \][/tex]
This simplifies the inequality to:
[tex]\[ -2j - 1 \leq 4j + 5. \][/tex]
2. Isolate [tex]\( j \)[/tex] on one side:
To isolate [tex]\( j \)[/tex], we need to get all terms involving [tex]\( j \)[/tex] on one side and constants on the other side. Start by adding [tex]\( 2j \)[/tex] to both sides to get rid of the [tex]\( -2j \)[/tex] term on the left:
[tex]\[ -2j - 1 + 2j \leq 4j + 5 + 2j. \][/tex]
Simplifying this, we get:
[tex]\[ -1 \leq 6j + 5. \][/tex]
3. Move the constant term to the other side:
Subtract 5 from both sides to isolate the [tex]\( j \)[/tex]-term:
[tex]\[ -1 - 5 \leq 6j. \][/tex]
Simplifying this, we get:
[tex]\[ -6 \leq 6j. \][/tex]
4. Solve for [tex]\( j \)[/tex]:
Divide both sides by 6 to isolate [tex]\( j \)[/tex]:
[tex]\[ \frac{-6}{6} \leq j. \][/tex]
Simplifying this, we get:
[tex]\[ -1 \leq j. \][/tex]
This means [tex]\( j \)[/tex] must be greater than or equal to [tex]\(-1\)[/tex].
The solution can be written in interval notation as:
[tex]\[ j \in [-1, \infty). \][/tex]
Thus, the solution to the inequality is
[tex]\[ \boxed{-1 \leq j < \infty}. \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.