Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Multiplying a quadratic function by a number greater than 1 results in a transformation known as a vertical stretch.
Here's a detailed, step-by-step explanation:
1. Understanding the Quadratic Function:
A quadratic function typically takes the form [tex]\( f(x) = ax^2 + bx + c \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are constants and [tex]\( a \neq 0 \)[/tex].
2. Effect of Multiplying by a Constant Greater Than 1:
When you multiply this function by a constant [tex]\( k \)[/tex] where [tex]\( k > 1 \)[/tex], the new function can be represented as [tex]\( g(x) = k \cdot f(x) = k \cdot (ax^2 + bx + c) \)[/tex].
3. Transformation Interpretation:
- For each point on the graph of [tex]\( f(x) \)[/tex], the corresponding point on the graph of [tex]\( g(x) \)[/tex] will have its [tex]\( y \)[/tex]-coordinate multiplied by [tex]\( k \)[/tex].
- Since [tex]\( k > 1 \)[/tex], every [tex]\( y \)[/tex]-coordinate is increased proportionally, causing the graph to stretch away from the x-axis.
4. Graphical Representation:
- Originally, if [tex]\( f(x) \)[/tex] passes through a point [tex]\( (x_1, y_1) \)[/tex], then [tex]\( g(x) \)[/tex] will pass through [tex]\( (x_1, k \cdot y_1) \)[/tex].
5. Conclusion:
Therefore, the function's graph will undergo a vertical stretch. This means it will become narrower since the y-values (heights) are increased while x-values (widths) remain unchanged.
Thus, multiplying a quadratic function by a number greater than 1 results in a vertical stretch.
Here's a detailed, step-by-step explanation:
1. Understanding the Quadratic Function:
A quadratic function typically takes the form [tex]\( f(x) = ax^2 + bx + c \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are constants and [tex]\( a \neq 0 \)[/tex].
2. Effect of Multiplying by a Constant Greater Than 1:
When you multiply this function by a constant [tex]\( k \)[/tex] where [tex]\( k > 1 \)[/tex], the new function can be represented as [tex]\( g(x) = k \cdot f(x) = k \cdot (ax^2 + bx + c) \)[/tex].
3. Transformation Interpretation:
- For each point on the graph of [tex]\( f(x) \)[/tex], the corresponding point on the graph of [tex]\( g(x) \)[/tex] will have its [tex]\( y \)[/tex]-coordinate multiplied by [tex]\( k \)[/tex].
- Since [tex]\( k > 1 \)[/tex], every [tex]\( y \)[/tex]-coordinate is increased proportionally, causing the graph to stretch away from the x-axis.
4. Graphical Representation:
- Originally, if [tex]\( f(x) \)[/tex] passes through a point [tex]\( (x_1, y_1) \)[/tex], then [tex]\( g(x) \)[/tex] will pass through [tex]\( (x_1, k \cdot y_1) \)[/tex].
5. Conclusion:
Therefore, the function's graph will undergo a vertical stretch. This means it will become narrower since the y-values (heights) are increased while x-values (widths) remain unchanged.
Thus, multiplying a quadratic function by a number greater than 1 results in a vertical stretch.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.