Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's analyze the given function:
[tex]\[ f(\theta) = \sec \left(\frac{\theta}{6} + \frac{\pi}{6}\right) \][/tex]
### Amplitude
The secant function does not have an amplitude because it is not bounded. Therefore:
[tex]\[ \text{Amplitude: None} \][/tex]
### Period
To find the period of the function, we use the coefficient of [tex]\(\theta\)[/tex] inside the secant function. The period [tex]\(P\)[/tex] of the secant function is given by:
[tex]\[ P = \frac{2\pi}{\text{coefficient of }\theta} \][/tex]
In our function, the coefficient of [tex]\(\theta\)[/tex] is [tex]\(\frac{1}{6}\)[/tex]. Therefore:
[tex]\[ P = \frac{2\pi}{\frac{1}{6}} = 2\pi \cdot 6 = 12\pi \][/tex]
[tex]\[ \text{Period: } 37.69911184307752 \text{ radians} \][/tex]
### Phase Shift
The phase shift [tex]\(\phi\)[/tex] occurs due to the term added inside the secant function. The phase shift formula is:
[tex]\[ \phi = -\frac{\text{term inside with }\theta}{\text{coefficient of }\theta} \][/tex]
Here, our inside term is [tex]\(\frac{\pi}{6}\)[/tex] and the coefficient of [tex]\(\theta\)[/tex] is [tex]\(\frac{1}{6}\)[/tex]:
[tex]\[ \phi = -\frac{\frac{\pi}{6}}{\frac{1}{6}} = -\pi \][/tex]
[tex]\[ \text{Phase shift: } -3.141592653589793 \text{ radians} \][/tex]
### Vertical Shift
There is no term outside the secant function that vertically shifts the graph up or down, so the vertical shift is:
[tex]\[ \text{Vertical shift: } 0 \][/tex]
### Vertical Asymptotes
Vertical asymptotes occur where the argument of the secant function equals an odd multiple of [tex]\(\frac{\pi}{2}\)[/tex]:
[tex]\[ \frac{\theta}{6} + \frac{\pi}{6} = (2n + 1)\frac{\pi}{2} \][/tex]
where [tex]\(n\)[/tex] is an integer. To solve for [tex]\(\theta\)[/tex]:
[tex]\[ \frac{\theta}{6} = (2n + 1)\frac{\pi}{2} - \frac{\pi}{6} \][/tex]
[tex]\[ \theta = 6 \left[(2n + 1)\frac{\pi}{2} - \frac{\pi}{6}\right] = 6\left[\frac{3(2n + 1)\pi - \pi}{6}\right] = 6\left[\frac{(2n + 1 - \frac{1}{3})\pi}{1}\right] \][/tex]
[tex]\[ \theta = 3\pi(2n + \frac{2}{3}) \][/tex]
Therefore, the vertical asymptotes are located at:
[tex]\[ \theta = 3\pi(2n + \frac{2}{3}) \][/tex]
A few vertical asymptotes within one period are:
[tex]\[ -87.96459430051421, -69.11503837897544, -50.26548245743669, -31.41592653589793, -12.566370614359174, 6.283185307179586, 25.132741228718345, 43.982297150257104, 62.83185307179586, 81.68140899333461, 100.53096491487338 \][/tex]
So, summarizing all parts:
[tex]\[ \begin{align*} \text{Amplitude:} &\ \text{None} \\ \text{Period:} &\ 37.69911184307752\ \text{radians} \\ \text{Phase Shift:} &\ -3.141592653589793\ \text{radians} \\ \text{Vertical Shift:} &\ 0 \\ \text{Vertical Asymptotes:} &\ -87.96459430051421, -69.11503837897544, -50.26548245743669, -31.41592653589793, -12.566370614359174, 6.283185307179586, 25.132741228718345, 43.982297150257104, 62.83185307179586, 81.68140899333461, 100.53096491487338 \end{align*} \][/tex]
[tex]\[ f(\theta) = \sec \left(\frac{\theta}{6} + \frac{\pi}{6}\right) \][/tex]
### Amplitude
The secant function does not have an amplitude because it is not bounded. Therefore:
[tex]\[ \text{Amplitude: None} \][/tex]
### Period
To find the period of the function, we use the coefficient of [tex]\(\theta\)[/tex] inside the secant function. The period [tex]\(P\)[/tex] of the secant function is given by:
[tex]\[ P = \frac{2\pi}{\text{coefficient of }\theta} \][/tex]
In our function, the coefficient of [tex]\(\theta\)[/tex] is [tex]\(\frac{1}{6}\)[/tex]. Therefore:
[tex]\[ P = \frac{2\pi}{\frac{1}{6}} = 2\pi \cdot 6 = 12\pi \][/tex]
[tex]\[ \text{Period: } 37.69911184307752 \text{ radians} \][/tex]
### Phase Shift
The phase shift [tex]\(\phi\)[/tex] occurs due to the term added inside the secant function. The phase shift formula is:
[tex]\[ \phi = -\frac{\text{term inside with }\theta}{\text{coefficient of }\theta} \][/tex]
Here, our inside term is [tex]\(\frac{\pi}{6}\)[/tex] and the coefficient of [tex]\(\theta\)[/tex] is [tex]\(\frac{1}{6}\)[/tex]:
[tex]\[ \phi = -\frac{\frac{\pi}{6}}{\frac{1}{6}} = -\pi \][/tex]
[tex]\[ \text{Phase shift: } -3.141592653589793 \text{ radians} \][/tex]
### Vertical Shift
There is no term outside the secant function that vertically shifts the graph up or down, so the vertical shift is:
[tex]\[ \text{Vertical shift: } 0 \][/tex]
### Vertical Asymptotes
Vertical asymptotes occur where the argument of the secant function equals an odd multiple of [tex]\(\frac{\pi}{2}\)[/tex]:
[tex]\[ \frac{\theta}{6} + \frac{\pi}{6} = (2n + 1)\frac{\pi}{2} \][/tex]
where [tex]\(n\)[/tex] is an integer. To solve for [tex]\(\theta\)[/tex]:
[tex]\[ \frac{\theta}{6} = (2n + 1)\frac{\pi}{2} - \frac{\pi}{6} \][/tex]
[tex]\[ \theta = 6 \left[(2n + 1)\frac{\pi}{2} - \frac{\pi}{6}\right] = 6\left[\frac{3(2n + 1)\pi - \pi}{6}\right] = 6\left[\frac{(2n + 1 - \frac{1}{3})\pi}{1}\right] \][/tex]
[tex]\[ \theta = 3\pi(2n + \frac{2}{3}) \][/tex]
Therefore, the vertical asymptotes are located at:
[tex]\[ \theta = 3\pi(2n + \frac{2}{3}) \][/tex]
A few vertical asymptotes within one period are:
[tex]\[ -87.96459430051421, -69.11503837897544, -50.26548245743669, -31.41592653589793, -12.566370614359174, 6.283185307179586, 25.132741228718345, 43.982297150257104, 62.83185307179586, 81.68140899333461, 100.53096491487338 \][/tex]
So, summarizing all parts:
[tex]\[ \begin{align*} \text{Amplitude:} &\ \text{None} \\ \text{Period:} &\ 37.69911184307752\ \text{radians} \\ \text{Phase Shift:} &\ -3.141592653589793\ \text{radians} \\ \text{Vertical Shift:} &\ 0 \\ \text{Vertical Asymptotes:} &\ -87.96459430051421, -69.11503837897544, -50.26548245743669, -31.41592653589793, -12.566370614359174, 6.283185307179586, 25.132741228718345, 43.982297150257104, 62.83185307179586, 81.68140899333461, 100.53096491487338 \end{align*} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.