Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Find the amplitude, period (in radians), phase shift (in radians), vertical shift, and vertical asymptotes (if any) of the function:

[tex]\[ f(x) = \sec \left( \frac{\theta}{6} + \frac{\pi}{6} \right) \][/tex]


Sagot :

Let's analyze the given function:

[tex]\[ f(\theta) = \sec \left(\frac{\theta}{6} + \frac{\pi}{6}\right) \][/tex]

### Amplitude
The secant function does not have an amplitude because it is not bounded. Therefore:

[tex]\[ \text{Amplitude: None} \][/tex]

### Period
To find the period of the function, we use the coefficient of [tex]\(\theta\)[/tex] inside the secant function. The period [tex]\(P\)[/tex] of the secant function is given by:

[tex]\[ P = \frac{2\pi}{\text{coefficient of }\theta} \][/tex]

In our function, the coefficient of [tex]\(\theta\)[/tex] is [tex]\(\frac{1}{6}\)[/tex]. Therefore:

[tex]\[ P = \frac{2\pi}{\frac{1}{6}} = 2\pi \cdot 6 = 12\pi \][/tex]

[tex]\[ \text{Period: } 37.69911184307752 \text{ radians} \][/tex]

### Phase Shift
The phase shift [tex]\(\phi\)[/tex] occurs due to the term added inside the secant function. The phase shift formula is:

[tex]\[ \phi = -\frac{\text{term inside with }\theta}{\text{coefficient of }\theta} \][/tex]

Here, our inside term is [tex]\(\frac{\pi}{6}\)[/tex] and the coefficient of [tex]\(\theta\)[/tex] is [tex]\(\frac{1}{6}\)[/tex]:

[tex]\[ \phi = -\frac{\frac{\pi}{6}}{\frac{1}{6}} = -\pi \][/tex]

[tex]\[ \text{Phase shift: } -3.141592653589793 \text{ radians} \][/tex]

### Vertical Shift
There is no term outside the secant function that vertically shifts the graph up or down, so the vertical shift is:

[tex]\[ \text{Vertical shift: } 0 \][/tex]

### Vertical Asymptotes
Vertical asymptotes occur where the argument of the secant function equals an odd multiple of [tex]\(\frac{\pi}{2}\)[/tex]:

[tex]\[ \frac{\theta}{6} + \frac{\pi}{6} = (2n + 1)\frac{\pi}{2} \][/tex]

where [tex]\(n\)[/tex] is an integer. To solve for [tex]\(\theta\)[/tex]:

[tex]\[ \frac{\theta}{6} = (2n + 1)\frac{\pi}{2} - \frac{\pi}{6} \][/tex]

[tex]\[ \theta = 6 \left[(2n + 1)\frac{\pi}{2} - \frac{\pi}{6}\right] = 6\left[\frac{3(2n + 1)\pi - \pi}{6}\right] = 6\left[\frac{(2n + 1 - \frac{1}{3})\pi}{1}\right] \][/tex]

[tex]\[ \theta = 3\pi(2n + \frac{2}{3}) \][/tex]

Therefore, the vertical asymptotes are located at:

[tex]\[ \theta = 3\pi(2n + \frac{2}{3}) \][/tex]

A few vertical asymptotes within one period are:

[tex]\[ -87.96459430051421, -69.11503837897544, -50.26548245743669, -31.41592653589793, -12.566370614359174, 6.283185307179586, 25.132741228718345, 43.982297150257104, 62.83185307179586, 81.68140899333461, 100.53096491487338 \][/tex]

So, summarizing all parts:

[tex]\[ \begin{align*} \text{Amplitude:} &\ \text{None} \\ \text{Period:} &\ 37.69911184307752\ \text{radians} \\ \text{Phase Shift:} &\ -3.141592653589793\ \text{radians} \\ \text{Vertical Shift:} &\ 0 \\ \text{Vertical Asymptotes:} &\ -87.96459430051421, -69.11503837897544, -50.26548245743669, -31.41592653589793, -12.566370614359174, 6.283185307179586, 25.132741228718345, 43.982297150257104, 62.83185307179586, 81.68140899333461, 100.53096491487338 \end{align*} \][/tex]