At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To rewrite the quadratic function [tex]\( f(t) = 4t^2 - 8t + 6 \)[/tex] into its vertex form [tex]\( a(t-h)^2 + k \)[/tex], we will use the method of completing the square. Let's go through the steps in detail:
1. Identify coefficients:
- [tex]\( a = 4 \)[/tex]
- [tex]\( b = -8 \)[/tex]
- [tex]\( c = 6 \)[/tex]
2. Factor out the coefficient of [tex]\( t^2 \)[/tex] from the quadratic and linear terms:
[tex]\[ f(t) = 4(t^2 - 2t) + 6 \][/tex]
3. Complete the square inside the parentheses:
- Take the coefficient of [tex]\( t \)[/tex], which is [tex]\(-2\)[/tex], halve it to get [tex]\(-1\)[/tex], and then square it to get [tex]\(1\)[/tex].
- Add and subtract this square inside the parentheses.
[tex]\[ f(t) = 4(t^2 - 2t + 1 - 1) + 6 \][/tex]
[tex]\[ f(t) = 4((t-1)^2 - 1) + 6 \][/tex]
4. Simplify the expression:
- Distribute the 4:
[tex]\[ f(t) = 4(t-1)^2 - 4 + 6 \][/tex]
- Combine like terms:
[tex]\[ f(t) = 4(t-1)^2 + 2 \][/tex]
Now the function is in vertex form [tex]\( f(t) = a(t-h)^2 + k \)[/tex], where:
- [tex]\( a = 4 \)[/tex]
- [tex]\( h = 1 \)[/tex]
- [tex]\( k = 2 \)[/tex]
The vertex form of [tex]\( f(t) \)[/tex] is [tex]\( f(t) = 4(t-1)^2 + 2 \)[/tex].
### Interpretation of the Vertex
- The vertex of the parabola is at [tex]\( (h, k) = (1, 2) \)[/tex].
- Since [tex]\( a = 4 \)[/tex], which is positive, the parabola opens upwards and the vertex represents the minimum point.
- Therefore, the minimum height of the roller coaster is [tex]\( k = 2 \)[/tex] meters from the ground.
Hence, the correct option is:
[tex]\[ f(t)=4(t-1)^2+2; \text{ the minimum height of the roller coaster is } 2 \text{ meters from the ground} \][/tex]
1. Identify coefficients:
- [tex]\( a = 4 \)[/tex]
- [tex]\( b = -8 \)[/tex]
- [tex]\( c = 6 \)[/tex]
2. Factor out the coefficient of [tex]\( t^2 \)[/tex] from the quadratic and linear terms:
[tex]\[ f(t) = 4(t^2 - 2t) + 6 \][/tex]
3. Complete the square inside the parentheses:
- Take the coefficient of [tex]\( t \)[/tex], which is [tex]\(-2\)[/tex], halve it to get [tex]\(-1\)[/tex], and then square it to get [tex]\(1\)[/tex].
- Add and subtract this square inside the parentheses.
[tex]\[ f(t) = 4(t^2 - 2t + 1 - 1) + 6 \][/tex]
[tex]\[ f(t) = 4((t-1)^2 - 1) + 6 \][/tex]
4. Simplify the expression:
- Distribute the 4:
[tex]\[ f(t) = 4(t-1)^2 - 4 + 6 \][/tex]
- Combine like terms:
[tex]\[ f(t) = 4(t-1)^2 + 2 \][/tex]
Now the function is in vertex form [tex]\( f(t) = a(t-h)^2 + k \)[/tex], where:
- [tex]\( a = 4 \)[/tex]
- [tex]\( h = 1 \)[/tex]
- [tex]\( k = 2 \)[/tex]
The vertex form of [tex]\( f(t) \)[/tex] is [tex]\( f(t) = 4(t-1)^2 + 2 \)[/tex].
### Interpretation of the Vertex
- The vertex of the parabola is at [tex]\( (h, k) = (1, 2) \)[/tex].
- Since [tex]\( a = 4 \)[/tex], which is positive, the parabola opens upwards and the vertex represents the minimum point.
- Therefore, the minimum height of the roller coaster is [tex]\( k = 2 \)[/tex] meters from the ground.
Hence, the correct option is:
[tex]\[ f(t)=4(t-1)^2+2; \text{ the minimum height of the roller coaster is } 2 \text{ meters from the ground} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.