At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve this problem step-by-step, applying the principles of the conservation of angular momentum.
### Step 1: Initial Information
- The initial rate of revolution is 1 revolution per second.
- Let's denote the initial moment of inertia by [tex]\( I_1 \)[/tex].
### Step 2: Moment of Inertia Decrease
- The problem states that the moment of inertia decreases by 40% when she folds her arms.
- If the initial moment of inertia [tex]\( I_1 \)[/tex] is 1 unit (for simplicity), the final moment of inertia [tex]\( I_2 \)[/tex] would be:
[tex]\[ I_2 = I_1 \times (1 - 0.4) = I_1 \times 0.6 \][/tex]
Therefore, if [tex]\( I_1 = 1 \)[/tex] (as a presumed unit), then:
[tex]\[ I_2 = 1 \times 0.6 = 0.6 \][/tex]
### Step 3: Conservation of Angular Momentum
- For a closed system where no external torques act, the angular momentum before and after folding her arms stays constant.
- The angular momentum is given by:
[tex]\[ L = I \times \omega \][/tex]
where [tex]\( L \)[/tex] is the angular momentum, [tex]\( I \)[/tex] is the moment of inertia, and [tex]\( \omega \)[/tex] is the angular velocity.
- Initially, the dancer's angular momentum [tex]\( L_1 \)[/tex] with her arms stretched (at [tex]\( \omega_1 = 1 \)[/tex] revolution per second) is:
[tex]\[ L_1 = I_1 \times \omega_1 = 1 \times 1 = 1 \][/tex]
### Step 4: Final Angular Velocity Calculation
- Let the final angular velocity when her arms are folded be [tex]\( \omega_2 \)[/tex]. The conservation of angular momentum states:
[tex]\[ L_1 = L_2 \][/tex]
Therefore,
[tex]\[ I_1 \times \omega_1 = I_2 \times \omega_2 \][/tex]
Substituting the known values:
[tex]\[ 1 \times 1 = 0.6 \times \omega_2 \][/tex]
[tex]\[ 1 = 0.6 \times \omega_2 \][/tex]
- Solving for [tex]\( \omega_2 \)[/tex]:
[tex]\[ \omega_2 = \frac{1}{0.6} = 1.6666666666666667 \][/tex]
### Conclusion
The new rate of revolution when the ballet dancer folds her arms, causing her moment of inertia to decrease by 40%, is approximately [tex]\( 1.67 \)[/tex] revolutions per second.
### Step 1: Initial Information
- The initial rate of revolution is 1 revolution per second.
- Let's denote the initial moment of inertia by [tex]\( I_1 \)[/tex].
### Step 2: Moment of Inertia Decrease
- The problem states that the moment of inertia decreases by 40% when she folds her arms.
- If the initial moment of inertia [tex]\( I_1 \)[/tex] is 1 unit (for simplicity), the final moment of inertia [tex]\( I_2 \)[/tex] would be:
[tex]\[ I_2 = I_1 \times (1 - 0.4) = I_1 \times 0.6 \][/tex]
Therefore, if [tex]\( I_1 = 1 \)[/tex] (as a presumed unit), then:
[tex]\[ I_2 = 1 \times 0.6 = 0.6 \][/tex]
### Step 3: Conservation of Angular Momentum
- For a closed system where no external torques act, the angular momentum before and after folding her arms stays constant.
- The angular momentum is given by:
[tex]\[ L = I \times \omega \][/tex]
where [tex]\( L \)[/tex] is the angular momentum, [tex]\( I \)[/tex] is the moment of inertia, and [tex]\( \omega \)[/tex] is the angular velocity.
- Initially, the dancer's angular momentum [tex]\( L_1 \)[/tex] with her arms stretched (at [tex]\( \omega_1 = 1 \)[/tex] revolution per second) is:
[tex]\[ L_1 = I_1 \times \omega_1 = 1 \times 1 = 1 \][/tex]
### Step 4: Final Angular Velocity Calculation
- Let the final angular velocity when her arms are folded be [tex]\( \omega_2 \)[/tex]. The conservation of angular momentum states:
[tex]\[ L_1 = L_2 \][/tex]
Therefore,
[tex]\[ I_1 \times \omega_1 = I_2 \times \omega_2 \][/tex]
Substituting the known values:
[tex]\[ 1 \times 1 = 0.6 \times \omega_2 \][/tex]
[tex]\[ 1 = 0.6 \times \omega_2 \][/tex]
- Solving for [tex]\( \omega_2 \)[/tex]:
[tex]\[ \omega_2 = \frac{1}{0.6} = 1.6666666666666667 \][/tex]
### Conclusion
The new rate of revolution when the ballet dancer folds her arms, causing her moment of inertia to decrease by 40%, is approximately [tex]\( 1.67 \)[/tex] revolutions per second.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.