Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To show that the diagonals of square [tex]\( PQRS \)[/tex] are perpendicular bisectors of each other, we need to verify two things:
1. The Diagonals Bisect Each Other: This means that the diagonals intersect at the same midpoint.
2. The Diagonals are Perpendicular: This means that the product of their slopes is [tex]\(-1\)[/tex].
Let's start with the information given:
- The lengths of [tex]\(\overline{SP}, \overline{PQ}, \overline{RQ},\)[/tex] and [tex]\(\overline{SR}\)[/tex] are each 5.
- The slopes of [tex]\(\overline{SP}\)[/tex] and [tex]\(\overline{RQ}\)[/tex] are both [tex]\(-\frac{4}{3}\)[/tex].
- The slopes of [tex]\(\overline{SR}\)[/tex] and [tex]\(\overline{PQ}\)[/tex] are both [tex]\(\frac{3}{4}\)[/tex].
- The lengths of [tex]\(\overline{SQ}\)[/tex] and [tex]\(\overline{RP}\)[/tex] are both [tex]\(\sqrt{50} \approx 7.071\)[/tex].
- The midpoint of both diagonals is [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex], which evaluates to [tex]\((4.5, 5.5)\)[/tex].
- The slopes of [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] are [tex]\(7\)[/tex] and [tex]\(-\frac{1}{7}\)[/tex], respectively.
### Verifying the Diagonals Bisect Each Other:
The midpoint of both diagonals (given) is [tex]\((4.5, 5.5)\)[/tex]. This indicates that:
- The midpoint of [tex]\(\overline{SQ}\)[/tex] is [tex]\((4.5, 5.5)\)[/tex].
- The midpoint of [tex]\(\overline{RP}\)[/tex] is also [tex]\((4.5, 5.5)\)[/tex].
Since both diagonals share the same midpoint, [tex]\(\overline{SQ}\)[/tex] and [tex]\(\overline{RP}\)[/tex] bisect each other.
### Verifying the Diagonals are Perpendicular:
For the diagonals to be perpendicular, the product of their slopes must be [tex]\(-1\)[/tex].
- The slope of [tex]\(\overline{RP}\)[/tex] is [tex]\(7\)[/tex].
- The slope of [tex]\(\overline{SQ}\)[/tex] is [tex]\(-\frac{1}{7}\)[/tex].
Let's multiply the slopes:
[tex]\[ \text{slope of } \overline{RP} \times \text{slope of } \overline{SQ} = 7 \times -\frac{1}{7} = -1 \][/tex]
Since the product of their slopes is indeed [tex]\(-1\)[/tex], the diagonals [tex]\(\overline{SQ}\)[/tex] and [tex]\(\overline{RP}\)[/tex] are perpendicular.
### Conclusion:
Given that:
- The diagonals share the same midpoint, [tex]\((4.5, 5.5)\)[/tex], proving that they bisect each other.
- The product of the slopes of the diagonals is [tex]\(-1\)[/tex], proving that they are perpendicular.
Hence, we can conclude that the diagonals of square [tex]\(PQRS\)[/tex] are perpendicular bisectors of each other.
1. The Diagonals Bisect Each Other: This means that the diagonals intersect at the same midpoint.
2. The Diagonals are Perpendicular: This means that the product of their slopes is [tex]\(-1\)[/tex].
Let's start with the information given:
- The lengths of [tex]\(\overline{SP}, \overline{PQ}, \overline{RQ},\)[/tex] and [tex]\(\overline{SR}\)[/tex] are each 5.
- The slopes of [tex]\(\overline{SP}\)[/tex] and [tex]\(\overline{RQ}\)[/tex] are both [tex]\(-\frac{4}{3}\)[/tex].
- The slopes of [tex]\(\overline{SR}\)[/tex] and [tex]\(\overline{PQ}\)[/tex] are both [tex]\(\frac{3}{4}\)[/tex].
- The lengths of [tex]\(\overline{SQ}\)[/tex] and [tex]\(\overline{RP}\)[/tex] are both [tex]\(\sqrt{50} \approx 7.071\)[/tex].
- The midpoint of both diagonals is [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex], which evaluates to [tex]\((4.5, 5.5)\)[/tex].
- The slopes of [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] are [tex]\(7\)[/tex] and [tex]\(-\frac{1}{7}\)[/tex], respectively.
### Verifying the Diagonals Bisect Each Other:
The midpoint of both diagonals (given) is [tex]\((4.5, 5.5)\)[/tex]. This indicates that:
- The midpoint of [tex]\(\overline{SQ}\)[/tex] is [tex]\((4.5, 5.5)\)[/tex].
- The midpoint of [tex]\(\overline{RP}\)[/tex] is also [tex]\((4.5, 5.5)\)[/tex].
Since both diagonals share the same midpoint, [tex]\(\overline{SQ}\)[/tex] and [tex]\(\overline{RP}\)[/tex] bisect each other.
### Verifying the Diagonals are Perpendicular:
For the diagonals to be perpendicular, the product of their slopes must be [tex]\(-1\)[/tex].
- The slope of [tex]\(\overline{RP}\)[/tex] is [tex]\(7\)[/tex].
- The slope of [tex]\(\overline{SQ}\)[/tex] is [tex]\(-\frac{1}{7}\)[/tex].
Let's multiply the slopes:
[tex]\[ \text{slope of } \overline{RP} \times \text{slope of } \overline{SQ} = 7 \times -\frac{1}{7} = -1 \][/tex]
Since the product of their slopes is indeed [tex]\(-1\)[/tex], the diagonals [tex]\(\overline{SQ}\)[/tex] and [tex]\(\overline{RP}\)[/tex] are perpendicular.
### Conclusion:
Given that:
- The diagonals share the same midpoint, [tex]\((4.5, 5.5)\)[/tex], proving that they bisect each other.
- The product of the slopes of the diagonals is [tex]\(-1\)[/tex], proving that they are perpendicular.
Hence, we can conclude that the diagonals of square [tex]\(PQRS\)[/tex] are perpendicular bisectors of each other.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.