Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the number of outcomes for which the sum of the rolls of two dice is composite, we need to first understand the sums that can be obtained and which of these sums are composite.
First, let's list all possible outcomes for rolling two dice, which range from 2 (1+1) to 12 (6+6):
- Sum of 2: [tex]\( (1,1) \)[/tex]
- Sum of 3: [tex]\( (1,2), (2,1) \)[/tex]
- Sum of 4: [tex]\( (1,3), (2,2), (3,1) \)[/tex]
- Sum of 5: [tex]\( (1,4), (2,3), (3,2), (4,1) \)[/tex]
- Sum of 6: [tex]\( (1,5), (2,4), (3,3), (4,2), (5,1) \)[/tex]
- Sum of 7: [tex]\( (1,6), (2,5), (3,4), (4,3), (5,2), (6,1) \)[/tex]
- Sum of 8: [tex]\( (2,6), (3,5), (4,4), (5,3), (6,2) \)[/tex]
- Sum of 9: [tex]\( (3,6), (4,5), (5,4), (6,3) \)[/tex]
- Sum of 10: [tex]\( (4,6), (5,5), (6,4) \)[/tex]
- Sum of 11: [tex]\( (5,6), (6,5) \)[/tex]
- Sum of 12: [tex]\( (6,6) \)[/tex]
Next, let's identify which sums are composite numbers. A composite number has more than two distinct positive divisors. The composite sums between 2 and 12 are:
- 4 (divisors: 1, 2, 4)
- 6 (divisors: 1, 2, 3, 6)
- 8 (divisors: 1, 2, 4, 8)
- 9 (divisors: 1, 3, 9)
- 10 (divisors: 1, 2, 5, 10)
- 12 (divisors: 1, 2, 3, 4, 6, 12)
Now, let's count how many combinations result in each composite sum:
- Sum of 4: [tex]\( (1,3), (2,2), (3,1) \)[/tex] — 3 outcomes
- Sum of 6: [tex]\( (1,5), (2,4), (3,3), (4,2), (5,1) \)[/tex] — 5 outcomes
- Sum of 8: [tex]\( (2,6), (3,5), (4,4), (5,3), (6,2) \)[/tex] — 5 outcomes
- Sum of 9: [tex]\( (3,6), (4,5), (5,4), (6,3) \)[/tex] — 4 outcomes
- Sum of 10: [tex]\( (4,6), (5,5), (6,4) \)[/tex] — 3 outcomes
- Sum of 12: [tex]\( (6,6) \)[/tex] — 1 outcome
Adding these together:
[tex]\(3 + 5 + 5 + 4 + 3 + 1 = 21\)[/tex]
Thus, there are [tex]\(21\)[/tex] outcomes where the sum is composite. This aligns with the number of outcomes where the sum of the dice rolls results in a composite number, as given. Therefore, the answer is:
There are [tex]\(\boxed{21}\)[/tex] outcomes where the sum is composite.
First, let's list all possible outcomes for rolling two dice, which range from 2 (1+1) to 12 (6+6):
- Sum of 2: [tex]\( (1,1) \)[/tex]
- Sum of 3: [tex]\( (1,2), (2,1) \)[/tex]
- Sum of 4: [tex]\( (1,3), (2,2), (3,1) \)[/tex]
- Sum of 5: [tex]\( (1,4), (2,3), (3,2), (4,1) \)[/tex]
- Sum of 6: [tex]\( (1,5), (2,4), (3,3), (4,2), (5,1) \)[/tex]
- Sum of 7: [tex]\( (1,6), (2,5), (3,4), (4,3), (5,2), (6,1) \)[/tex]
- Sum of 8: [tex]\( (2,6), (3,5), (4,4), (5,3), (6,2) \)[/tex]
- Sum of 9: [tex]\( (3,6), (4,5), (5,4), (6,3) \)[/tex]
- Sum of 10: [tex]\( (4,6), (5,5), (6,4) \)[/tex]
- Sum of 11: [tex]\( (5,6), (6,5) \)[/tex]
- Sum of 12: [tex]\( (6,6) \)[/tex]
Next, let's identify which sums are composite numbers. A composite number has more than two distinct positive divisors. The composite sums between 2 and 12 are:
- 4 (divisors: 1, 2, 4)
- 6 (divisors: 1, 2, 3, 6)
- 8 (divisors: 1, 2, 4, 8)
- 9 (divisors: 1, 3, 9)
- 10 (divisors: 1, 2, 5, 10)
- 12 (divisors: 1, 2, 3, 4, 6, 12)
Now, let's count how many combinations result in each composite sum:
- Sum of 4: [tex]\( (1,3), (2,2), (3,1) \)[/tex] — 3 outcomes
- Sum of 6: [tex]\( (1,5), (2,4), (3,3), (4,2), (5,1) \)[/tex] — 5 outcomes
- Sum of 8: [tex]\( (2,6), (3,5), (4,4), (5,3), (6,2) \)[/tex] — 5 outcomes
- Sum of 9: [tex]\( (3,6), (4,5), (5,4), (6,3) \)[/tex] — 4 outcomes
- Sum of 10: [tex]\( (4,6), (5,5), (6,4) \)[/tex] — 3 outcomes
- Sum of 12: [tex]\( (6,6) \)[/tex] — 1 outcome
Adding these together:
[tex]\(3 + 5 + 5 + 4 + 3 + 1 = 21\)[/tex]
Thus, there are [tex]\(21\)[/tex] outcomes where the sum is composite. This aligns with the number of outcomes where the sum of the dice rolls results in a composite number, as given. Therefore, the answer is:
There are [tex]\(\boxed{21}\)[/tex] outcomes where the sum is composite.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.