Answered

Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Calculate the pH at the equivalence point for the titration of 0.230 M methylamine [tex]\(\left( CH_3NH_2 \right)\)[/tex] with 0.230 M HCl. The [tex]\(K_b\)[/tex] of methylamine is [tex]\(5.0 \times 10^{-4}\)[/tex].

[tex]\[ pH = \][/tex]


Sagot :

Certainly! Let's calculate the pH at the equivalence point for the titration of 0.230 M methylamine [tex]\((\text{CH}_3\text{NH}_2)\)[/tex] with 0.230 M HCl.

### Step-by-Step Solution:

1. Given:
- Concentration of methylamine: [tex]\(0.230 \, \text{M}\)[/tex]
- Concentration of HCl: [tex]\(0.230 \, \text{M}\)[/tex]
- [tex]\(K_b\)[/tex] of methylamine: [tex]\(5.0 \times 10^{-4}\)[/tex]

2. Determine [tex]\(K_a\)[/tex] for the Conjugate Acid:

Methylamine is a weak base, and at the equivalence point, we need to consider its conjugate acid. The [tex]\(K_a\)[/tex] value of the conjugate acid [tex]\((\text{CH}_3\text{NH}_3^+)\)[/tex] can be found using the relationship between [tex]\(K_a\)[/tex] and [tex]\(K_b\)[/tex]:

[tex]\[ K_w = 1.0 \times 10^{-14} \][/tex]
[tex]\[ K_a = \frac{K_w}{K_b} = \frac{1.0 \times 10^{-14}}{5.0 \times 10^{-4}} = 2.0 \times 10^{-11} \][/tex]

3. Calculate [tex]\(pK_a\)[/tex]:

[tex]\[ pK_a = -\log_{10}(K_a) \][/tex]
[tex]\[ pK_a = -\log_{10}(2.0 \times 10^{-11}) \approx 10.70 \][/tex]

4. Consider the Equivalence Point:

At the equivalence point, the methylamine has been neutralized by HCl to form its conjugate acid [tex]\((\text{CH}_3\text{NH}_3^+)\)[/tex]. The concentration of [tex]\(\text{CH}_3\text{NH}_3^+\)[/tex] will be 0.230 M (same as the initial concentration of methylamine).

5. Set Up the ICE Table for the Conjugate Acid Dissociation:

[tex]\[ \text{CH}_3\text{NH}_3^+ \leftrightharpoons \text{CH}_3\text{NH}_2 + \text{H}^+ \][/tex]
- Initial: [tex]\([\text{CH}_3\text{NH}_3^+] = 0.230 \, \text{M}\)[/tex], [[tex]\(\text{H}^+\)[/tex]] = 0, [[tex]\(\text{CH}_3\text{NH}_2\)[/tex]] = 0
- Change: [tex]\([\text{CH}_3\text{NH}_3^+]\)[/tex] decreases by [tex]\(x\)[/tex], [[tex]\(\text{H}^+\)[/tex]] increases by [tex]\(x\)[/tex], [[tex]\(\text{CH}_3\text{NH}_2\)[/tex]] increases by [tex]\(x\)[/tex]
- Equilibrium: [tex]\([\text{CH}_3\text{NH}_3^+] = 0.230 - x\)[/tex], [[tex]\(\text{H}^+\)[/tex]] = [tex]\(x\)[/tex], [[tex]\(\text{CH}_3\text{NH}_2\)[/tex]] = [tex]\(x\)[/tex]

The [tex]\(K_a\)[/tex] expression is:

[tex]\[ K_a = \frac{[\text{H}^+][\text{CH}_3\text{NH}_2]}{[\text{CH}_3\text{NH}_3^+]} = \frac{x^2}{(0.230 - x)} \][/tex]

6. Assume [tex]\(x\)[/tex] is Small Compared to 0.230 M:

[tex]\[ K_a \approx \frac{x^2}{0.230} \][/tex]
[tex]\[ 2.0 \times 10^{-11} = \frac{x^2}{0.230} \][/tex]
[tex]\[ x^2 = (2.0 \times 10^{-11}) \times 0.230 \][/tex]
[tex]\[ x \approx \sqrt{(2.0 \times 10^{-11}) \times 0.230} \approx 2.1447610589527217 \times 10^{-6} \, \text{M} \][/tex]

Here, [tex]\(x\)[/tex] represents the [tex]\([\text{H}^+]\)[/tex] concentration.

7. Calculate pH:

[tex]\[ \text{pH} = -\log_{10}(x) \][/tex]
[tex]\[ \text{pH} = -\log_{10}(2.1447610589527217 \times 10^{-6}) \approx 5.67 \][/tex]

### Final Answer:

The pH at the equivalence point for the titration of 0.230 M methylamine with 0.230 M HCl is approximately 5.67.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.