Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Select the correct answer from the drop-down menu.

[tex]\[
\sin \left(90^{\circ} - x \right) = -\frac{\sqrt{3}}{2}
\][/tex]

The value of [tex]\( x \)[/tex] that satisfies the equation is [tex]\( \square \)[/tex].


Sagot :

To solve the equation [tex]\(\sin(90^{\circ} - x) = -\frac{\sqrt{3}}{2}\)[/tex], let's proceed step-by-step:

1. Understand the Sine Complementarity:
The identity [tex]\(\sin(90^\circ - x) = \cos(x)\)[/tex] tells us that:
[tex]\[ \sin(90^\circ - x) = \cos(x) \][/tex]
Therefore, we can rewrite the given equation as:
[tex]\[ \cos(x) = -\frac{\sqrt{3}}{2} \][/tex]

2. Determine the Reference Angle:
The cosine value of [tex]\(\frac{\sqrt{3}}{2}\)[/tex] occurs at 30 degrees (or [tex]\(\pi/6\)[/tex] radians). However, since the cosine is negative, [tex]\(x\)[/tex] lies in the second or third quadrant.

3. Find the Possible Angles in Each Quadrant:
- In the second quadrant, the angle is [tex]\(180^\circ - 30^\circ\)[/tex]:
[tex]\[ x_1 = 180^\circ - 30^\circ = 150^\circ \][/tex]
- In the third quadrant, the angle is [tex]\(180^\circ + 30^\circ\)[/tex]:
[tex]\[ x_2 = 180^\circ + 30^\circ = 210^\circ \][/tex]

4. Solution:
Therefore, the values of [tex]\(x\)[/tex] that satisfy the equation are:
[tex]\[ x = 150^\circ \text{ or } 210^\circ \][/tex]

Thus, the correct value(s) of [tex]\(x\)[/tex] that satisfy the equation are [tex]\(\boxed{150}\)[/tex] and [tex]\(\boxed{210}\)[/tex].