Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

If [tex]\( n \)[/tex] arithmetic means are inserted between 5 and 35, and the ratio of the second and last mean is 1:4, find the value of [tex]\( n \)[/tex].

Sagot :

To determine the number of arithmetic means [tex]\( n \)[/tex] inserted between 5 and 35, given that the ratio of the second mean to the last mean is 1:4, we'll proceed with a systematic, step-by-step approach.

Let’s define:
- [tex]\( a_1 = 5 \)[/tex] (the first term).
- [tex]\( a_{n+2} = 35 \)[/tex] (the last term, where there are [tex]\( n \)[/tex] arithmetic means in between).

The terms of the arithmetic sequence are denoted as [tex]\( a_1, a_2, a_3, \ldots, a_{n+1}, a_{n+2} \)[/tex].

### Step 1: Establish the general formula for arithmetic progression

The nth term of an arithmetic progression can be expressed as:
[tex]\[ a_n = a_1 + (n-1)d \][/tex]
where [tex]\( d \)[/tex] is the common difference.

### Step 2: Determine the expressions for the means

Since [tex]\( a_1 = 5 \)[/tex] and [tex]\( a_{n+2} = 35 \)[/tex], we can write:
[tex]\[ a_{n+2} = a_1 + (n+1)d \][/tex]
[tex]\[ 35 = 5 + (n+1)d \][/tex]
From this equation, we can solve for [tex]\( d \)[/tex]:
[tex]\[ (n+1)d = 30 \][/tex]
[tex]\[ d = \frac{30}{n+1} \][/tex]

### Step 3: Set up the ratios for the second and last mean

The second mean is [tex]\( a_2 \)[/tex]:
[tex]\[ a_2 = a_1 + d = 5 + \frac{30}{n+1} \][/tex]

The last mean is [tex]\( a_{n+1} \)[/tex]:
[tex]\[ a_{n+1} = a_1 + nd = 5 + n \cdot \frac{30}{n+1} \][/tex]

Given that the ratio of the second mean to the last mean is 1:4, we set up the following ratio:
[tex]\[ \frac{a_2}{a_{n+1}} = \frac{1}{4} \][/tex]

### Step 4: Substitute the expressions and solve for [tex]\( n \)[/tex]

[tex]\[ \frac{5 + \frac{30}{n+1}}{5 + n \cdot \frac{30}{n+1}} = \frac{1}{4} \][/tex]

Simplifying the equation:
[tex]\[ \frac{5(n+1) + 30}{5(n+1) + 30n} = \frac{1}{4} \][/tex]
[tex]\[ \frac{5n + 5 + 30}{5n + 5 + 30n} = \frac{1}{4} \][/tex]
[tex]\[ \frac{5n + 35}{35n + 5} = \frac{1}{4} \][/tex]

Cross-multiplying to clear the fraction:
[tex]\[ 4(5n + 35) = 35n + 5 \][/tex]
[tex]\[ 20n + 140 = 35n + 5 \][/tex]
[tex]\[ 140 - 5 = 35n - 20n \][/tex]
[tex]\[ 135 = 15n \][/tex]
[tex]\[ n = 9 \][/tex]

### Conclusion

The number of arithmetic means [tex]\( n \)[/tex] inserted between 5 and 35 such that the ratio of the second mean to the last mean is 1:4 is:
[tex]\[ n = 9 \][/tex]