Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the probability that Van got exactly 1 question correct out of 8, when each question has 4 answer choices, we use the binomial probability formula:
[tex]\[ P(k \text{ successes }) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
Here, [tex]\( n \)[/tex] is the number of questions, [tex]\( k \)[/tex] is the number of successes (questions answered correctly), and [tex]\( p \)[/tex] is the probability of success for each question.
Let's break it down step by step:
1. Number of questions [tex]\( n \)[/tex]: 8
2. Number of successful guesses [tex]\( k \)[/tex]: 1
3. Probability of a successful guess [tex]\( p \)[/tex]: [tex]\(\frac{1}{4} = 0.25\)[/tex] (since there are 4 choices per question and only one correct choice).
First, we calculate the binomial coefficient [tex]\(\binom{n}{k}\)[/tex], which represents the number of ways to choose [tex]\( k \)[/tex] successes from [tex]\( n \)[/tex] trials:
[tex]\[ \binom{8}{1} = \frac{8!}{(8-1)!\cdot 1!} = \frac{8!}{7! \cdot 1!} = 8 \][/tex]
Next, we calculate the probability of exactly 1 success [tex]\( p^k \)[/tex]:
[tex]\[ p^k = (0.25)^1 = 0.25 \][/tex]
Then, we calculate the probability of [tex]\( n - k \)[/tex] failures:
[tex]\[ (1-p)^{n-k} = (1-0.25)^{8-1} = 0.75^7 \approx 0.133484 \][/tex]
Now, using these values, we calculate the overall probability using the binomial formula:
[tex]\[ P(1 \text{ success in 8 trials}) = \binom{8}{1} \cdot 0.25 \cdot 0.133484 = 8 \cdot 0.25 \cdot 0.133484 \approx 0.267 \][/tex]
Thus, the probability that Van got exactly 1 question correct, rounding to the nearest thousandth, is:
[tex]\[ \boxed{0.267} \][/tex]
[tex]\[ P(k \text{ successes }) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
Here, [tex]\( n \)[/tex] is the number of questions, [tex]\( k \)[/tex] is the number of successes (questions answered correctly), and [tex]\( p \)[/tex] is the probability of success for each question.
Let's break it down step by step:
1. Number of questions [tex]\( n \)[/tex]: 8
2. Number of successful guesses [tex]\( k \)[/tex]: 1
3. Probability of a successful guess [tex]\( p \)[/tex]: [tex]\(\frac{1}{4} = 0.25\)[/tex] (since there are 4 choices per question and only one correct choice).
First, we calculate the binomial coefficient [tex]\(\binom{n}{k}\)[/tex], which represents the number of ways to choose [tex]\( k \)[/tex] successes from [tex]\( n \)[/tex] trials:
[tex]\[ \binom{8}{1} = \frac{8!}{(8-1)!\cdot 1!} = \frac{8!}{7! \cdot 1!} = 8 \][/tex]
Next, we calculate the probability of exactly 1 success [tex]\( p^k \)[/tex]:
[tex]\[ p^k = (0.25)^1 = 0.25 \][/tex]
Then, we calculate the probability of [tex]\( n - k \)[/tex] failures:
[tex]\[ (1-p)^{n-k} = (1-0.25)^{8-1} = 0.75^7 \approx 0.133484 \][/tex]
Now, using these values, we calculate the overall probability using the binomial formula:
[tex]\[ P(1 \text{ success in 8 trials}) = \binom{8}{1} \cdot 0.25 \cdot 0.133484 = 8 \cdot 0.25 \cdot 0.133484 \approx 0.267 \][/tex]
Thus, the probability that Van got exactly 1 question correct, rounding to the nearest thousandth, is:
[tex]\[ \boxed{0.267} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.