At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which sentence accurately summarizes the probability that a store sells more than 390 CDs in a week given a normal distribution with a mean of 455 and a standard deviation of 65, we'll follow these steps:
1. Define the Parameters:
- Mean ([tex]\(\mu\)[/tex]) = 455 CDs
- Standard deviation ([tex]\(\sigma\)[/tex]) = 65 CDs
- Value of interest (X) = 390 CDs
2. Calculate the Z-score:
The Z-score formula is given by:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
where:
- [tex]\(X\)[/tex] is the value of interest (390 CDs)
- [tex]\(\mu\)[/tex] is the mean (455 CDs)
- [tex]\(\sigma\)[/tex] is the standard deviation (65 CDs)
So,
[tex]\[ Z = \frac{390 - 455}{65} = \frac{-65}{65} = -1 \][/tex]
3. Find the Probability:
To find the probability associated with a Z-score of -1, we refer to the cumulative distribution function (CDF) of a standard normal distribution. The CDF gives the probability that a standard normal random variable is less than or equal to a given value.
For [tex]\(Z = -1\)[/tex], the CDF value is approximately 0.1587. This means there is a 15.87% chance that the shop sells fewer than 390 CDs in a week.
4. Complementary Probability:
To find the probability that the shop sells more than 390 CDs, we need to consider the complement of the CDF at [tex]\(Z = -1\)[/tex]. The complementary probability can be calculated as:
[tex]\[ P(X > 390) = 1 - P(X \leq 390) \][/tex]
So,
[tex]\[ P(X > 390) = 1 - 0.1587 = 0.8413 \][/tex]
This means there is approximately an 84.13% chance that the shop sells more than 390 CDs in a week.
Given this information, the correct answer is:
- A. There is an 84% chance that the shop sells more than 390 CDs in a week.
1. Define the Parameters:
- Mean ([tex]\(\mu\)[/tex]) = 455 CDs
- Standard deviation ([tex]\(\sigma\)[/tex]) = 65 CDs
- Value of interest (X) = 390 CDs
2. Calculate the Z-score:
The Z-score formula is given by:
[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]
where:
- [tex]\(X\)[/tex] is the value of interest (390 CDs)
- [tex]\(\mu\)[/tex] is the mean (455 CDs)
- [tex]\(\sigma\)[/tex] is the standard deviation (65 CDs)
So,
[tex]\[ Z = \frac{390 - 455}{65} = \frac{-65}{65} = -1 \][/tex]
3. Find the Probability:
To find the probability associated with a Z-score of -1, we refer to the cumulative distribution function (CDF) of a standard normal distribution. The CDF gives the probability that a standard normal random variable is less than or equal to a given value.
For [tex]\(Z = -1\)[/tex], the CDF value is approximately 0.1587. This means there is a 15.87% chance that the shop sells fewer than 390 CDs in a week.
4. Complementary Probability:
To find the probability that the shop sells more than 390 CDs, we need to consider the complement of the CDF at [tex]\(Z = -1\)[/tex]. The complementary probability can be calculated as:
[tex]\[ P(X > 390) = 1 - P(X \leq 390) \][/tex]
So,
[tex]\[ P(X > 390) = 1 - 0.1587 = 0.8413 \][/tex]
This means there is approximately an 84.13% chance that the shop sells more than 390 CDs in a week.
Given this information, the correct answer is:
- A. There is an 84% chance that the shop sells more than 390 CDs in a week.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.