Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the probability of picking a face card from a standard deck of 52 cards, we need to follow these steps:
1. Understand the composition of a deck: A standard deck has 52 cards, divided into 4 suits (hearts, diamonds, clubs, and spades). Each suit contains 13 cards.
2. Identify face cards: In each suit, the face cards are the King, Queen, and Jack, making a total of 3 face cards per suit.
3. Calculate the total number of face cards: Since there are 4 suits and each suit has 3 face cards, we have:
[tex]\[ 3 \text{ face cards/suit} \times 4 \text{ suits} = 12 \text{ face cards} \][/tex]
4. Determine the probability: Probability is defined as the ratio of the number of favorable outcomes to the total number of possible outcomes. Therefore, the probability [tex]\(P\)[/tex] of picking a face card is:
[tex]\[ P(\text{Face Card}) = \frac{\text{Number of face cards}}{\text{Total number of cards}} = \frac{12}{52} \][/tex]
5. Simplify the fraction: Simplify [tex]\(\frac{12}{52}\)[/tex] by dividing both the numerator and the denominator by their greatest common divisor, which is 4:
[tex]\[ \frac{12 \div 4}{52 \div 4} = \frac{3}{13} \][/tex]
So, the probability of picking a face card from a standard deck of 52 cards is [tex]\(\frac{3}{13}\)[/tex].
Now, let's analyze the given options:
a. [tex]\(\frac{3}{13}\)[/tex]
b. [tex]\(\frac{3}{26}\)[/tex]
c. [tex]\(\frac{14}{52}\)[/tex]
d. [tex]\(\frac{12}{13}\)[/tex]
The correct answer is [tex]\(\frac{3}{13}\)[/tex], which corresponds to option a.
1. Understand the composition of a deck: A standard deck has 52 cards, divided into 4 suits (hearts, diamonds, clubs, and spades). Each suit contains 13 cards.
2. Identify face cards: In each suit, the face cards are the King, Queen, and Jack, making a total of 3 face cards per suit.
3. Calculate the total number of face cards: Since there are 4 suits and each suit has 3 face cards, we have:
[tex]\[ 3 \text{ face cards/suit} \times 4 \text{ suits} = 12 \text{ face cards} \][/tex]
4. Determine the probability: Probability is defined as the ratio of the number of favorable outcomes to the total number of possible outcomes. Therefore, the probability [tex]\(P\)[/tex] of picking a face card is:
[tex]\[ P(\text{Face Card}) = \frac{\text{Number of face cards}}{\text{Total number of cards}} = \frac{12}{52} \][/tex]
5. Simplify the fraction: Simplify [tex]\(\frac{12}{52}\)[/tex] by dividing both the numerator and the denominator by their greatest common divisor, which is 4:
[tex]\[ \frac{12 \div 4}{52 \div 4} = \frac{3}{13} \][/tex]
So, the probability of picking a face card from a standard deck of 52 cards is [tex]\(\frac{3}{13}\)[/tex].
Now, let's analyze the given options:
a. [tex]\(\frac{3}{13}\)[/tex]
b. [tex]\(\frac{3}{26}\)[/tex]
c. [tex]\(\frac{14}{52}\)[/tex]
d. [tex]\(\frac{12}{13}\)[/tex]
The correct answer is [tex]\(\frac{3}{13}\)[/tex], which corresponds to option a.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.