Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the equation [tex]\(2^x + 1 = 9\)[/tex] for [tex]\(x\)[/tex], follow these steps:
1. Isolate [tex]\(2^x\)[/tex]:
Start by isolating the term with the exponent, which in this case is [tex]\(2^x\)[/tex]. We do this by subtracting 1 from both sides of the equation:
[tex]\[ 2^x + 1 - 1 = 9 - 1 \][/tex]
Simplifying, we get:
[tex]\[ 2^x = 8 \][/tex]
2. Apply logarithms:
To solve for [tex]\(x\)[/tex], we need to get rid of the exponent. We can do this by taking the logarithm base 2 of both sides of the equation:
[tex]\[ \log_2 (2^x) = \log_2 (8) \][/tex]
3. Simplify using logarithmic properties:
Use the property of logarithms that states [tex]\(\log_b (a^c) = c \cdot \log_b (a)\)[/tex]. Applying this property, we get:
[tex]\[ x \cdot \log_2 (2) = \log_2 (8) \][/tex]
4. Simplify further:
Since [tex]\(\log_2 (2) = 1\)[/tex], the equation simplifies to:
[tex]\[ x \cdot 1 = \log_2 (8) \][/tex]
So we have:
[tex]\[ x = \log_2 (8) \][/tex]
5. Calculate [tex]\(\log_2 (8)\)[/tex] using the change of base formula:
The change of base formula states that [tex]\(\log_b (a) = \frac{\log_c (a)}{\log_c (b)}\)[/tex], where [tex]\(c\)[/tex] is any positive number. Using base 10 for simplicity:
[tex]\[ \log_2 (8) = \frac{\log_{10} (8)}{\log_{10} (2)} \][/tex]
6. Evaluate the logarithms:
Using common logarithms:
[tex]\[ \log_{10} (8) \approx 0.903 \][/tex]
[tex]\[ \log_{10} (2) \approx 0.301 \][/tex]
Dividing these values, we get:
[tex]\[ \log_2 (8) = \frac{0.903}{0.301} \approx 3 \][/tex]
Thus, the solution for [tex]\(x\)[/tex] is:
[tex]\[ x \approx 3.0 \][/tex]
So, rounded to the nearest thousandth, the value of [tex]\(x\)[/tex] is [tex]\(\boxed{3.000}\)[/tex].
1. Isolate [tex]\(2^x\)[/tex]:
Start by isolating the term with the exponent, which in this case is [tex]\(2^x\)[/tex]. We do this by subtracting 1 from both sides of the equation:
[tex]\[ 2^x + 1 - 1 = 9 - 1 \][/tex]
Simplifying, we get:
[tex]\[ 2^x = 8 \][/tex]
2. Apply logarithms:
To solve for [tex]\(x\)[/tex], we need to get rid of the exponent. We can do this by taking the logarithm base 2 of both sides of the equation:
[tex]\[ \log_2 (2^x) = \log_2 (8) \][/tex]
3. Simplify using logarithmic properties:
Use the property of logarithms that states [tex]\(\log_b (a^c) = c \cdot \log_b (a)\)[/tex]. Applying this property, we get:
[tex]\[ x \cdot \log_2 (2) = \log_2 (8) \][/tex]
4. Simplify further:
Since [tex]\(\log_2 (2) = 1\)[/tex], the equation simplifies to:
[tex]\[ x \cdot 1 = \log_2 (8) \][/tex]
So we have:
[tex]\[ x = \log_2 (8) \][/tex]
5. Calculate [tex]\(\log_2 (8)\)[/tex] using the change of base formula:
The change of base formula states that [tex]\(\log_b (a) = \frac{\log_c (a)}{\log_c (b)}\)[/tex], where [tex]\(c\)[/tex] is any positive number. Using base 10 for simplicity:
[tex]\[ \log_2 (8) = \frac{\log_{10} (8)}{\log_{10} (2)} \][/tex]
6. Evaluate the logarithms:
Using common logarithms:
[tex]\[ \log_{10} (8) \approx 0.903 \][/tex]
[tex]\[ \log_{10} (2) \approx 0.301 \][/tex]
Dividing these values, we get:
[tex]\[ \log_2 (8) = \frac{0.903}{0.301} \approx 3 \][/tex]
Thus, the solution for [tex]\(x\)[/tex] is:
[tex]\[ x \approx 3.0 \][/tex]
So, rounded to the nearest thousandth, the value of [tex]\(x\)[/tex] is [tex]\(\boxed{3.000}\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.