Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the equation [tex]\(2^x + 1 = 9\)[/tex] for [tex]\(x\)[/tex], follow these steps:
1. Isolate [tex]\(2^x\)[/tex]:
Start by isolating the term with the exponent, which in this case is [tex]\(2^x\)[/tex]. We do this by subtracting 1 from both sides of the equation:
[tex]\[ 2^x + 1 - 1 = 9 - 1 \][/tex]
Simplifying, we get:
[tex]\[ 2^x = 8 \][/tex]
2. Apply logarithms:
To solve for [tex]\(x\)[/tex], we need to get rid of the exponent. We can do this by taking the logarithm base 2 of both sides of the equation:
[tex]\[ \log_2 (2^x) = \log_2 (8) \][/tex]
3. Simplify using logarithmic properties:
Use the property of logarithms that states [tex]\(\log_b (a^c) = c \cdot \log_b (a)\)[/tex]. Applying this property, we get:
[tex]\[ x \cdot \log_2 (2) = \log_2 (8) \][/tex]
4. Simplify further:
Since [tex]\(\log_2 (2) = 1\)[/tex], the equation simplifies to:
[tex]\[ x \cdot 1 = \log_2 (8) \][/tex]
So we have:
[tex]\[ x = \log_2 (8) \][/tex]
5. Calculate [tex]\(\log_2 (8)\)[/tex] using the change of base formula:
The change of base formula states that [tex]\(\log_b (a) = \frac{\log_c (a)}{\log_c (b)}\)[/tex], where [tex]\(c\)[/tex] is any positive number. Using base 10 for simplicity:
[tex]\[ \log_2 (8) = \frac{\log_{10} (8)}{\log_{10} (2)} \][/tex]
6. Evaluate the logarithms:
Using common logarithms:
[tex]\[ \log_{10} (8) \approx 0.903 \][/tex]
[tex]\[ \log_{10} (2) \approx 0.301 \][/tex]
Dividing these values, we get:
[tex]\[ \log_2 (8) = \frac{0.903}{0.301} \approx 3 \][/tex]
Thus, the solution for [tex]\(x\)[/tex] is:
[tex]\[ x \approx 3.0 \][/tex]
So, rounded to the nearest thousandth, the value of [tex]\(x\)[/tex] is [tex]\(\boxed{3.000}\)[/tex].
1. Isolate [tex]\(2^x\)[/tex]:
Start by isolating the term with the exponent, which in this case is [tex]\(2^x\)[/tex]. We do this by subtracting 1 from both sides of the equation:
[tex]\[ 2^x + 1 - 1 = 9 - 1 \][/tex]
Simplifying, we get:
[tex]\[ 2^x = 8 \][/tex]
2. Apply logarithms:
To solve for [tex]\(x\)[/tex], we need to get rid of the exponent. We can do this by taking the logarithm base 2 of both sides of the equation:
[tex]\[ \log_2 (2^x) = \log_2 (8) \][/tex]
3. Simplify using logarithmic properties:
Use the property of logarithms that states [tex]\(\log_b (a^c) = c \cdot \log_b (a)\)[/tex]. Applying this property, we get:
[tex]\[ x \cdot \log_2 (2) = \log_2 (8) \][/tex]
4. Simplify further:
Since [tex]\(\log_2 (2) = 1\)[/tex], the equation simplifies to:
[tex]\[ x \cdot 1 = \log_2 (8) \][/tex]
So we have:
[tex]\[ x = \log_2 (8) \][/tex]
5. Calculate [tex]\(\log_2 (8)\)[/tex] using the change of base formula:
The change of base formula states that [tex]\(\log_b (a) = \frac{\log_c (a)}{\log_c (b)}\)[/tex], where [tex]\(c\)[/tex] is any positive number. Using base 10 for simplicity:
[tex]\[ \log_2 (8) = \frac{\log_{10} (8)}{\log_{10} (2)} \][/tex]
6. Evaluate the logarithms:
Using common logarithms:
[tex]\[ \log_{10} (8) \approx 0.903 \][/tex]
[tex]\[ \log_{10} (2) \approx 0.301 \][/tex]
Dividing these values, we get:
[tex]\[ \log_2 (8) = \frac{0.903}{0.301} \approx 3 \][/tex]
Thus, the solution for [tex]\(x\)[/tex] is:
[tex]\[ x \approx 3.0 \][/tex]
So, rounded to the nearest thousandth, the value of [tex]\(x\)[/tex] is [tex]\(\boxed{3.000}\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.