Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the equation [tex]\(2^x + 1 = 9\)[/tex] for [tex]\(x\)[/tex], follow these steps:
1. Isolate [tex]\(2^x\)[/tex]:
Start by isolating the term with the exponent, which in this case is [tex]\(2^x\)[/tex]. We do this by subtracting 1 from both sides of the equation:
[tex]\[ 2^x + 1 - 1 = 9 - 1 \][/tex]
Simplifying, we get:
[tex]\[ 2^x = 8 \][/tex]
2. Apply logarithms:
To solve for [tex]\(x\)[/tex], we need to get rid of the exponent. We can do this by taking the logarithm base 2 of both sides of the equation:
[tex]\[ \log_2 (2^x) = \log_2 (8) \][/tex]
3. Simplify using logarithmic properties:
Use the property of logarithms that states [tex]\(\log_b (a^c) = c \cdot \log_b (a)\)[/tex]. Applying this property, we get:
[tex]\[ x \cdot \log_2 (2) = \log_2 (8) \][/tex]
4. Simplify further:
Since [tex]\(\log_2 (2) = 1\)[/tex], the equation simplifies to:
[tex]\[ x \cdot 1 = \log_2 (8) \][/tex]
So we have:
[tex]\[ x = \log_2 (8) \][/tex]
5. Calculate [tex]\(\log_2 (8)\)[/tex] using the change of base formula:
The change of base formula states that [tex]\(\log_b (a) = \frac{\log_c (a)}{\log_c (b)}\)[/tex], where [tex]\(c\)[/tex] is any positive number. Using base 10 for simplicity:
[tex]\[ \log_2 (8) = \frac{\log_{10} (8)}{\log_{10} (2)} \][/tex]
6. Evaluate the logarithms:
Using common logarithms:
[tex]\[ \log_{10} (8) \approx 0.903 \][/tex]
[tex]\[ \log_{10} (2) \approx 0.301 \][/tex]
Dividing these values, we get:
[tex]\[ \log_2 (8) = \frac{0.903}{0.301} \approx 3 \][/tex]
Thus, the solution for [tex]\(x\)[/tex] is:
[tex]\[ x \approx 3.0 \][/tex]
So, rounded to the nearest thousandth, the value of [tex]\(x\)[/tex] is [tex]\(\boxed{3.000}\)[/tex].
1. Isolate [tex]\(2^x\)[/tex]:
Start by isolating the term with the exponent, which in this case is [tex]\(2^x\)[/tex]. We do this by subtracting 1 from both sides of the equation:
[tex]\[ 2^x + 1 - 1 = 9 - 1 \][/tex]
Simplifying, we get:
[tex]\[ 2^x = 8 \][/tex]
2. Apply logarithms:
To solve for [tex]\(x\)[/tex], we need to get rid of the exponent. We can do this by taking the logarithm base 2 of both sides of the equation:
[tex]\[ \log_2 (2^x) = \log_2 (8) \][/tex]
3. Simplify using logarithmic properties:
Use the property of logarithms that states [tex]\(\log_b (a^c) = c \cdot \log_b (a)\)[/tex]. Applying this property, we get:
[tex]\[ x \cdot \log_2 (2) = \log_2 (8) \][/tex]
4. Simplify further:
Since [tex]\(\log_2 (2) = 1\)[/tex], the equation simplifies to:
[tex]\[ x \cdot 1 = \log_2 (8) \][/tex]
So we have:
[tex]\[ x = \log_2 (8) \][/tex]
5. Calculate [tex]\(\log_2 (8)\)[/tex] using the change of base formula:
The change of base formula states that [tex]\(\log_b (a) = \frac{\log_c (a)}{\log_c (b)}\)[/tex], where [tex]\(c\)[/tex] is any positive number. Using base 10 for simplicity:
[tex]\[ \log_2 (8) = \frac{\log_{10} (8)}{\log_{10} (2)} \][/tex]
6. Evaluate the logarithms:
Using common logarithms:
[tex]\[ \log_{10} (8) \approx 0.903 \][/tex]
[tex]\[ \log_{10} (2) \approx 0.301 \][/tex]
Dividing these values, we get:
[tex]\[ \log_2 (8) = \frac{0.903}{0.301} \approx 3 \][/tex]
Thus, the solution for [tex]\(x\)[/tex] is:
[tex]\[ x \approx 3.0 \][/tex]
So, rounded to the nearest thousandth, the value of [tex]\(x\)[/tex] is [tex]\(\boxed{3.000}\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.