Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To convert the given equation of a circle from its general form to the standard form, we will complete the square for both [tex]\(x\)[/tex] and [tex]\(y\)[/tex]. Here is the step-by-step process:
1. Start with the given equation:
[tex]\[ 3x^2 + 3y^2 + 30x - 24y - 12 = 0 \][/tex]
2. Divide the entire equation by 3 to simplify it:
[tex]\[ x^2 + y^2 + 10x - 8y - 4 = 0 \][/tex]
3. Group the [tex]\(x\)[/tex]-terms and [tex]\(y\)[/tex]-terms:
[tex]\[ (x^2 + 10x) + (y^2 - 8y) = 4 \][/tex]
4. Complete the square for the [tex]\(x\)[/tex]-terms:
[tex]\[ x^2 + 10x \rightarrow (x + 5)^2 - 25 \][/tex]
5. Complete the square for the [tex]\(y\)[/tex]-terms:
[tex]\[ y^2 - 8y \rightarrow (y - 4)^2 - 16 \][/tex]
6. Substitute the completed squares back into the equation:
[tex]\[ (x + 5)^2 - 25 + (y - 4)^2 - 16 = 4 \][/tex]
7. Rearrange the equation to form the standard equation of a circle:
[tex]\[ (x + 5)^2 + (y - 4)^2 = 4 + 25 + 16 \][/tex]
[tex]\[ (x + 5)^2 + (y - 4)^2 = 45 \][/tex]
So, the standard form of the equation is:
[tex]\[ (x + 5)^2 + (y - 4)^2 = 45 \][/tex]
Thus, the standard form of the equation is
[tex]\( (x + \boxed{5})^2 + (y - \boxed{4})^2 = \boxed{45} \)[/tex]
1. Start with the given equation:
[tex]\[ 3x^2 + 3y^2 + 30x - 24y - 12 = 0 \][/tex]
2. Divide the entire equation by 3 to simplify it:
[tex]\[ x^2 + y^2 + 10x - 8y - 4 = 0 \][/tex]
3. Group the [tex]\(x\)[/tex]-terms and [tex]\(y\)[/tex]-terms:
[tex]\[ (x^2 + 10x) + (y^2 - 8y) = 4 \][/tex]
4. Complete the square for the [tex]\(x\)[/tex]-terms:
[tex]\[ x^2 + 10x \rightarrow (x + 5)^2 - 25 \][/tex]
5. Complete the square for the [tex]\(y\)[/tex]-terms:
[tex]\[ y^2 - 8y \rightarrow (y - 4)^2 - 16 \][/tex]
6. Substitute the completed squares back into the equation:
[tex]\[ (x + 5)^2 - 25 + (y - 4)^2 - 16 = 4 \][/tex]
7. Rearrange the equation to form the standard equation of a circle:
[tex]\[ (x + 5)^2 + (y - 4)^2 = 4 + 25 + 16 \][/tex]
[tex]\[ (x + 5)^2 + (y - 4)^2 = 45 \][/tex]
So, the standard form of the equation is:
[tex]\[ (x + 5)^2 + (y - 4)^2 = 45 \][/tex]
Thus, the standard form of the equation is
[tex]\( (x + \boxed{5})^2 + (y - \boxed{4})^2 = \boxed{45} \)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.