Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the inequality [tex]\( -\frac{1}{2} x \geq 4 \)[/tex], let's go through the steps in detail:
1. Rewrite the Inequality:
We start with the given inequality:
[tex]\[ -\frac{1}{2} x \geq 4 \][/tex]
2. Isolate the Variable:
To isolate [tex]\( x \)[/tex], we need to get rid of the coefficient [tex]\( -\frac{1}{2} \)[/tex]. This can be done by multiplying both sides of the inequality by the reciprocal of [tex]\( -\frac{1}{2} \)[/tex], which is [tex]\( -2 \)[/tex]. Remember, when we multiply or divide both sides of an inequality by a negative number, we reverse the inequality sign.
Multiplying both sides by [tex]\( -2 \)[/tex], we get:
[tex]\[ x \leq 4 \cdot -2 \][/tex]
3. Simplify:
Simplifying the right side of the inequality:
[tex]\[ x \leq -8 \][/tex]
4. Solution Set:
The inequality [tex]\( x \leq -8 \)[/tex] tells us that [tex]\( x \)[/tex] can be any number less than or equal to [tex]\(-8\)[/tex].
5. Number Line Representation:
On a number line, this solution set includes all the numbers to the left of [tex]\(-8\)[/tex] and [tex]\(-8\)[/tex] itself. Here's how it would be depicted:
- Draw a number line.
- Place a closed circle (because [tex]\(-8\)[/tex] is included in the solution set) at [tex]\( x = -8 \)[/tex].
- Shade the line extending to the left of [tex]\(-8\)[/tex], indicating all numbers less than [tex]\(-8\)[/tex].
Here is a visual representation:
```
<-----|====================================>
-8
```
In this representation, the closed circle at [tex]\(-8\)[/tex] and the shading to the left show that [tex]\( x \)[/tex] can be any number less than or equal to [tex]\(-8\)[/tex].
Thus, the number line correctly representing the solution set for the inequality [tex]\( -\frac{1}{2} x \geq 4 \)[/tex] includes all values from [tex]\(-\infty\)[/tex] to [tex]\(-8\)[/tex], inclusive of [tex]\(-8\)[/tex].
1. Rewrite the Inequality:
We start with the given inequality:
[tex]\[ -\frac{1}{2} x \geq 4 \][/tex]
2. Isolate the Variable:
To isolate [tex]\( x \)[/tex], we need to get rid of the coefficient [tex]\( -\frac{1}{2} \)[/tex]. This can be done by multiplying both sides of the inequality by the reciprocal of [tex]\( -\frac{1}{2} \)[/tex], which is [tex]\( -2 \)[/tex]. Remember, when we multiply or divide both sides of an inequality by a negative number, we reverse the inequality sign.
Multiplying both sides by [tex]\( -2 \)[/tex], we get:
[tex]\[ x \leq 4 \cdot -2 \][/tex]
3. Simplify:
Simplifying the right side of the inequality:
[tex]\[ x \leq -8 \][/tex]
4. Solution Set:
The inequality [tex]\( x \leq -8 \)[/tex] tells us that [tex]\( x \)[/tex] can be any number less than or equal to [tex]\(-8\)[/tex].
5. Number Line Representation:
On a number line, this solution set includes all the numbers to the left of [tex]\(-8\)[/tex] and [tex]\(-8\)[/tex] itself. Here's how it would be depicted:
- Draw a number line.
- Place a closed circle (because [tex]\(-8\)[/tex] is included in the solution set) at [tex]\( x = -8 \)[/tex].
- Shade the line extending to the left of [tex]\(-8\)[/tex], indicating all numbers less than [tex]\(-8\)[/tex].
Here is a visual representation:
```
<-----|====================================>
-8
```
In this representation, the closed circle at [tex]\(-8\)[/tex] and the shading to the left show that [tex]\( x \)[/tex] can be any number less than or equal to [tex]\(-8\)[/tex].
Thus, the number line correctly representing the solution set for the inequality [tex]\( -\frac{1}{2} x \geq 4 \)[/tex] includes all values from [tex]\(-\infty\)[/tex] to [tex]\(-8\)[/tex], inclusive of [tex]\(-8\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.