Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's go through each case step by step to find the Pythagorean triplet whose one member matches the given values.
### (ii) One member is 6:
To find a Pythagorean triplet where one of the members is 6, we can explore existing Pythagorean triplets or manipulate known triplets.
We know that a common Pythagorean triplet is (3, 4, 5). If we multiply each member of this triplet by 2, we get:
[tex]\[ 2 \times 3 = 6 \][/tex]
[tex]\[ 2 \times 4 = 8 \][/tex]
[tex]\[ 2 \times 5 = 10 \][/tex]
Thus, the triplet (6, 8, 10) is a valid Pythagorean triplet.
### (ii) One member is 14:
To find a Pythagorean triplet where one of the members is 14, we can use a known triplet and adjust it accordingly.
Considering the triplet (7, 24, 25), we can adjust by multiplying by 2:
[tex]\[ 2 \times 7 = 14 \][/tex]
[tex]\[ 2 \times 24 = 48 \][/tex]
[tex]\[ 2 \times 25 = 50 \][/tex]
Thus, the triplet (14, 48, 50) fits our requirement.
### (iii) One member is 16:
To find a Pythagorean triplet where one of the members is 16, we use another known triplet.
Using the triplet (8, 15, 17), and multiplying by 2, we get:
[tex]\[ 2 \times 8 = 16 \][/tex]
[tex]\[ 2 \times 15 = 30 \][/tex]
[tex]\[ 2 \times 17 = 34 \][/tex]
Thus, the triplet (16, 30, 34) is a valid Pythagorean triplet.
In conclusion:
- A Pythagorean triplet with one member as 6 is (6, 8, 10).
- A Pythagorean triplet with one member as 14 is (14, 48, 50).
- A Pythagorean triplet with one member as 16 is (16, 30, 34).
These triplets satisfy the Pythagorean theorem:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
for the respective values of a, b, and c.
### (ii) One member is 6:
To find a Pythagorean triplet where one of the members is 6, we can explore existing Pythagorean triplets or manipulate known triplets.
We know that a common Pythagorean triplet is (3, 4, 5). If we multiply each member of this triplet by 2, we get:
[tex]\[ 2 \times 3 = 6 \][/tex]
[tex]\[ 2 \times 4 = 8 \][/tex]
[tex]\[ 2 \times 5 = 10 \][/tex]
Thus, the triplet (6, 8, 10) is a valid Pythagorean triplet.
### (ii) One member is 14:
To find a Pythagorean triplet where one of the members is 14, we can use a known triplet and adjust it accordingly.
Considering the triplet (7, 24, 25), we can adjust by multiplying by 2:
[tex]\[ 2 \times 7 = 14 \][/tex]
[tex]\[ 2 \times 24 = 48 \][/tex]
[tex]\[ 2 \times 25 = 50 \][/tex]
Thus, the triplet (14, 48, 50) fits our requirement.
### (iii) One member is 16:
To find a Pythagorean triplet where one of the members is 16, we use another known triplet.
Using the triplet (8, 15, 17), and multiplying by 2, we get:
[tex]\[ 2 \times 8 = 16 \][/tex]
[tex]\[ 2 \times 15 = 30 \][/tex]
[tex]\[ 2 \times 17 = 34 \][/tex]
Thus, the triplet (16, 30, 34) is a valid Pythagorean triplet.
In conclusion:
- A Pythagorean triplet with one member as 6 is (6, 8, 10).
- A Pythagorean triplet with one member as 14 is (14, 48, 50).
- A Pythagorean triplet with one member as 16 is (16, 30, 34).
These triplets satisfy the Pythagorean theorem:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
for the respective values of a, b, and c.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.