Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve this problem, we need to find the angular velocity (ω) of the ice skater given that the radial acceleration at a distance of 24.0 cm from her axis of rotation must not exceed 6 times the gravitational acceleration (g).
### Step-by-Step Solution
1. Convert the radius to meters:
Given the radial distance [tex]\( r \)[/tex] is 24.0 cm, we first convert this to meters:
[tex]\[ r = \frac{24.0 \, \text{cm}}{100} = 0.24 \, \text{m} \][/tex]
2. Identify the given gravitational acceleration:
The gravitational acceleration [tex]\( g \)[/tex] is:
[tex]\[ g = 9.81 \, \text{m/s}^2 \][/tex]
3. Calculate the maximum radial (centripetal) acceleration:
The problem states that the radial acceleration should not exceed 6 times the gravitational acceleration. Hence:
[tex]\[ a_r = 6.00 \times g = 6.00 \times 9.81 \, \text{m/s}^2 = 58.86 \, \text{m/s}^2 \][/tex]
4. Relate radial acceleration to angular velocity:
The formula for radial (centripetal) acceleration [tex]\( a_r \)[/tex] is given by:
[tex]\[ a_r = \omega^2 \times r \][/tex]
Where [tex]\( \omega \)[/tex] is the angular velocity and [tex]\( r \)[/tex] is the radius.
5. Solve for the angular velocity [tex]\( \omega \)[/tex]:
Rearrange the equation to solve for [tex]\( \omega \)[/tex]:
[tex]\[ \omega = \sqrt{\frac{a_r}{r}} \][/tex]
Substitute the values of [tex]\( a_r \)[/tex] and [tex]\( r \)[/tex] into the equation:
[tex]\[ \omega = \sqrt{\frac{58.86 \, \text{m/s}^2}{0.24 \, \text{m}}} \][/tex]
6. Calculate the angular velocity:
Carry out the division and square root operations:
[tex]\[ \omega = \sqrt{245.25} \approx 15.660 \, \text{rad/s} \][/tex]
### Final Answer
The angular velocity of the ice skater, given the constraints, is approximately:
[tex]\[ \boxed{15.66 \, \text{rad/s}} \][/tex]
### Step-by-Step Solution
1. Convert the radius to meters:
Given the radial distance [tex]\( r \)[/tex] is 24.0 cm, we first convert this to meters:
[tex]\[ r = \frac{24.0 \, \text{cm}}{100} = 0.24 \, \text{m} \][/tex]
2. Identify the given gravitational acceleration:
The gravitational acceleration [tex]\( g \)[/tex] is:
[tex]\[ g = 9.81 \, \text{m/s}^2 \][/tex]
3. Calculate the maximum radial (centripetal) acceleration:
The problem states that the radial acceleration should not exceed 6 times the gravitational acceleration. Hence:
[tex]\[ a_r = 6.00 \times g = 6.00 \times 9.81 \, \text{m/s}^2 = 58.86 \, \text{m/s}^2 \][/tex]
4. Relate radial acceleration to angular velocity:
The formula for radial (centripetal) acceleration [tex]\( a_r \)[/tex] is given by:
[tex]\[ a_r = \omega^2 \times r \][/tex]
Where [tex]\( \omega \)[/tex] is the angular velocity and [tex]\( r \)[/tex] is the radius.
5. Solve for the angular velocity [tex]\( \omega \)[/tex]:
Rearrange the equation to solve for [tex]\( \omega \)[/tex]:
[tex]\[ \omega = \sqrt{\frac{a_r}{r}} \][/tex]
Substitute the values of [tex]\( a_r \)[/tex] and [tex]\( r \)[/tex] into the equation:
[tex]\[ \omega = \sqrt{\frac{58.86 \, \text{m/s}^2}{0.24 \, \text{m}}} \][/tex]
6. Calculate the angular velocity:
Carry out the division and square root operations:
[tex]\[ \omega = \sqrt{245.25} \approx 15.660 \, \text{rad/s} \][/tex]
### Final Answer
The angular velocity of the ice skater, given the constraints, is approximately:
[tex]\[ \boxed{15.66 \, \text{rad/s}} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.