Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve this problem, we need to find the angular velocity (ω) of the ice skater given that the radial acceleration at a distance of 24.0 cm from her axis of rotation must not exceed 6 times the gravitational acceleration (g).
### Step-by-Step Solution
1. Convert the radius to meters:
Given the radial distance [tex]\( r \)[/tex] is 24.0 cm, we first convert this to meters:
[tex]\[ r = \frac{24.0 \, \text{cm}}{100} = 0.24 \, \text{m} \][/tex]
2. Identify the given gravitational acceleration:
The gravitational acceleration [tex]\( g \)[/tex] is:
[tex]\[ g = 9.81 \, \text{m/s}^2 \][/tex]
3. Calculate the maximum radial (centripetal) acceleration:
The problem states that the radial acceleration should not exceed 6 times the gravitational acceleration. Hence:
[tex]\[ a_r = 6.00 \times g = 6.00 \times 9.81 \, \text{m/s}^2 = 58.86 \, \text{m/s}^2 \][/tex]
4. Relate radial acceleration to angular velocity:
The formula for radial (centripetal) acceleration [tex]\( a_r \)[/tex] is given by:
[tex]\[ a_r = \omega^2 \times r \][/tex]
Where [tex]\( \omega \)[/tex] is the angular velocity and [tex]\( r \)[/tex] is the radius.
5. Solve for the angular velocity [tex]\( \omega \)[/tex]:
Rearrange the equation to solve for [tex]\( \omega \)[/tex]:
[tex]\[ \omega = \sqrt{\frac{a_r}{r}} \][/tex]
Substitute the values of [tex]\( a_r \)[/tex] and [tex]\( r \)[/tex] into the equation:
[tex]\[ \omega = \sqrt{\frac{58.86 \, \text{m/s}^2}{0.24 \, \text{m}}} \][/tex]
6. Calculate the angular velocity:
Carry out the division and square root operations:
[tex]\[ \omega = \sqrt{245.25} \approx 15.660 \, \text{rad/s} \][/tex]
### Final Answer
The angular velocity of the ice skater, given the constraints, is approximately:
[tex]\[ \boxed{15.66 \, \text{rad/s}} \][/tex]
### Step-by-Step Solution
1. Convert the radius to meters:
Given the radial distance [tex]\( r \)[/tex] is 24.0 cm, we first convert this to meters:
[tex]\[ r = \frac{24.0 \, \text{cm}}{100} = 0.24 \, \text{m} \][/tex]
2. Identify the given gravitational acceleration:
The gravitational acceleration [tex]\( g \)[/tex] is:
[tex]\[ g = 9.81 \, \text{m/s}^2 \][/tex]
3. Calculate the maximum radial (centripetal) acceleration:
The problem states that the radial acceleration should not exceed 6 times the gravitational acceleration. Hence:
[tex]\[ a_r = 6.00 \times g = 6.00 \times 9.81 \, \text{m/s}^2 = 58.86 \, \text{m/s}^2 \][/tex]
4. Relate radial acceleration to angular velocity:
The formula for radial (centripetal) acceleration [tex]\( a_r \)[/tex] is given by:
[tex]\[ a_r = \omega^2 \times r \][/tex]
Where [tex]\( \omega \)[/tex] is the angular velocity and [tex]\( r \)[/tex] is the radius.
5. Solve for the angular velocity [tex]\( \omega \)[/tex]:
Rearrange the equation to solve for [tex]\( \omega \)[/tex]:
[tex]\[ \omega = \sqrt{\frac{a_r}{r}} \][/tex]
Substitute the values of [tex]\( a_r \)[/tex] and [tex]\( r \)[/tex] into the equation:
[tex]\[ \omega = \sqrt{\frac{58.86 \, \text{m/s}^2}{0.24 \, \text{m}}} \][/tex]
6. Calculate the angular velocity:
Carry out the division and square root operations:
[tex]\[ \omega = \sqrt{245.25} \approx 15.660 \, \text{rad/s} \][/tex]
### Final Answer
The angular velocity of the ice skater, given the constraints, is approximately:
[tex]\[ \boxed{15.66 \, \text{rad/s}} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.