Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which value of [tex]\( x \)[/tex] is in the solution set of the inequality [tex]\( 9(2x + 1) < 9x - 18 \)[/tex], let's solve it step-by-step.
1. Distribute the 9 on the left-hand side of the inequality:
[tex]\[ 9(2x + 1) < 9x - 18 \][/tex]
Which gives:
[tex]\[ 18x + 9 < 9x - 18 \][/tex]
2. Subtract [tex]\( 9x \)[/tex] from both sides of the inequality to isolate the terms involving [tex]\( x \)[/tex] on one side:
[tex]\[ 18x + 9 - 9x < 9x - 18 - 9x \][/tex]
Simplifying this, we get:
[tex]\[ 9x + 9 < -18 \][/tex]
3. Subtract 9 from both sides to further isolate [tex]\( x \)[/tex]:
[tex]\[ 9x + 9 - 9 < -18 - 9 \][/tex]
Simplifying this, we get:
[tex]\[ 9x < -27 \][/tex]
4. Divide both sides by 9 to solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{9x}{9} < \frac{-27}{9} \][/tex]
Simplifying this, we get:
[tex]\[ x < -3 \][/tex]
Therefore, the solution to the inequality is [tex]\( x < -3 \)[/tex].
Now, we need to determine which value from the provided options [tex]\((-4, -3, -2, -1)\)[/tex] satisfies this inequality. The only value that is less than [tex]\(-3\)[/tex] is [tex]\(-4\)[/tex].
Hence, the value of [tex]\( x \)[/tex] that is in the solution set of the inequality is:
[tex]\[ \boxed{-4} \][/tex]
1. Distribute the 9 on the left-hand side of the inequality:
[tex]\[ 9(2x + 1) < 9x - 18 \][/tex]
Which gives:
[tex]\[ 18x + 9 < 9x - 18 \][/tex]
2. Subtract [tex]\( 9x \)[/tex] from both sides of the inequality to isolate the terms involving [tex]\( x \)[/tex] on one side:
[tex]\[ 18x + 9 - 9x < 9x - 18 - 9x \][/tex]
Simplifying this, we get:
[tex]\[ 9x + 9 < -18 \][/tex]
3. Subtract 9 from both sides to further isolate [tex]\( x \)[/tex]:
[tex]\[ 9x + 9 - 9 < -18 - 9 \][/tex]
Simplifying this, we get:
[tex]\[ 9x < -27 \][/tex]
4. Divide both sides by 9 to solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{9x}{9} < \frac{-27}{9} \][/tex]
Simplifying this, we get:
[tex]\[ x < -3 \][/tex]
Therefore, the solution to the inequality is [tex]\( x < -3 \)[/tex].
Now, we need to determine which value from the provided options [tex]\((-4, -3, -2, -1)\)[/tex] satisfies this inequality. The only value that is less than [tex]\(-3\)[/tex] is [tex]\(-4\)[/tex].
Hence, the value of [tex]\( x \)[/tex] that is in the solution set of the inequality is:
[tex]\[ \boxed{-4} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.