Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the molar solubility [tex]\( S \)[/tex] of lead(II) carbonate ([tex]\( PbCO_3 \)[/tex]), given the solubility product constant [tex]\( K_{sp} = 7.40 \times 10^{-14} \)[/tex], we can follow these steps:
1. Write the dissociation equation:
[tex]\( PbCO_3(s) \leftrightarrow Pb^{2+}(aq) + CO_3^{2-}(aq) \)[/tex]
2. Express the concentrations at equilibrium:
Let [tex]\( S \)[/tex] be the molar solubility of [tex]\( PbCO_3 \)[/tex].
At equilibrium:
[tex]\[ [Pb^{2+}] = S \][/tex]
[tex]\[ [CO_3^{2-}] = S \][/tex]
3. Write the expression for the solubility product constant ([tex]\( K_{sp} \)[/tex]):
[tex]\[ K_{sp} = [Pb^{2+}][CO_3^{2-}] \][/tex]
Since both ions have the same concentration [tex]\( S \)[/tex] at equilibrium, the expression becomes:
[tex]\[ K_{sp} = S \times S = S^2 \][/tex]
4. Solve for the molar solubility [tex]\( S \)[/tex]:
[tex]\[ K_{sp} = S^2 \][/tex]
[tex]\[ S = \sqrt{K_{sp}} \][/tex]
Substituting the value of [tex]\( K_{sp} \)[/tex]:
[tex]\[ S = \sqrt{7.40 \times 10^{-14}} \][/tex]
[tex]\[ S = 2.7202941017470887 \times 10^{-7} \][/tex]
Thus, the molar solubility [tex]\( S \)[/tex] of [tex]\( PbCO_3 \)[/tex] is approximately:
[tex]\[ S = 2.7202941017470887 \times 10^{-7} \, M \][/tex]
This indicates that the solubility of lead(II) carbonate in water is very low due to its small solubility product constant.
1. Write the dissociation equation:
[tex]\( PbCO_3(s) \leftrightarrow Pb^{2+}(aq) + CO_3^{2-}(aq) \)[/tex]
2. Express the concentrations at equilibrium:
Let [tex]\( S \)[/tex] be the molar solubility of [tex]\( PbCO_3 \)[/tex].
At equilibrium:
[tex]\[ [Pb^{2+}] = S \][/tex]
[tex]\[ [CO_3^{2-}] = S \][/tex]
3. Write the expression for the solubility product constant ([tex]\( K_{sp} \)[/tex]):
[tex]\[ K_{sp} = [Pb^{2+}][CO_3^{2-}] \][/tex]
Since both ions have the same concentration [tex]\( S \)[/tex] at equilibrium, the expression becomes:
[tex]\[ K_{sp} = S \times S = S^2 \][/tex]
4. Solve for the molar solubility [tex]\( S \)[/tex]:
[tex]\[ K_{sp} = S^2 \][/tex]
[tex]\[ S = \sqrt{K_{sp}} \][/tex]
Substituting the value of [tex]\( K_{sp} \)[/tex]:
[tex]\[ S = \sqrt{7.40 \times 10^{-14}} \][/tex]
[tex]\[ S = 2.7202941017470887 \times 10^{-7} \][/tex]
Thus, the molar solubility [tex]\( S \)[/tex] of [tex]\( PbCO_3 \)[/tex] is approximately:
[tex]\[ S = 2.7202941017470887 \times 10^{-7} \, M \][/tex]
This indicates that the solubility of lead(II) carbonate in water is very low due to its small solubility product constant.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.