Answered

At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

The [tex]K_{sp}[/tex] of lead(II) carbonate, [tex]PbCO_3[/tex], is [tex]7.40 \times 10^{-14}[/tex]. Calculate the molar solubility, [tex]S[/tex], of this compound.

[tex]S = \square \times 10^0 \, M[/tex]

[tex]\square[/tex] TOOLS

[tex]\times 10^y[/tex]


Sagot :

To determine the molar solubility [tex]\( S \)[/tex] of lead(II) carbonate ([tex]\( PbCO_3 \)[/tex]), given the solubility product constant [tex]\( K_{sp} = 7.40 \times 10^{-14} \)[/tex], we can follow these steps:

1. Write the dissociation equation:
[tex]\( PbCO_3(s) \leftrightarrow Pb^{2+}(aq) + CO_3^{2-}(aq) \)[/tex]

2. Express the concentrations at equilibrium:
Let [tex]\( S \)[/tex] be the molar solubility of [tex]\( PbCO_3 \)[/tex].
At equilibrium:
[tex]\[ [Pb^{2+}] = S \][/tex]
[tex]\[ [CO_3^{2-}] = S \][/tex]

3. Write the expression for the solubility product constant ([tex]\( K_{sp} \)[/tex]):
[tex]\[ K_{sp} = [Pb^{2+}][CO_3^{2-}] \][/tex]
Since both ions have the same concentration [tex]\( S \)[/tex] at equilibrium, the expression becomes:
[tex]\[ K_{sp} = S \times S = S^2 \][/tex]

4. Solve for the molar solubility [tex]\( S \)[/tex]:
[tex]\[ K_{sp} = S^2 \][/tex]
[tex]\[ S = \sqrt{K_{sp}} \][/tex]
Substituting the value of [tex]\( K_{sp} \)[/tex]:
[tex]\[ S = \sqrt{7.40 \times 10^{-14}} \][/tex]
[tex]\[ S = 2.7202941017470887 \times 10^{-7} \][/tex]

Thus, the molar solubility [tex]\( S \)[/tex] of [tex]\( PbCO_3 \)[/tex] is approximately:
[tex]\[ S = 2.7202941017470887 \times 10^{-7} \, M \][/tex]

This indicates that the solubility of lead(II) carbonate in water is very low due to its small solubility product constant.