Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's solve the inequality step-by-step.
Given inequality:
[tex]\[ 3|x - 6| \leq 9 \][/tex]
Step 1: Isolate the absolute value expression
First, divide both sides of the inequality by 3:
[tex]\[ |x - 6| \leq 3 \][/tex]
Step 2: Understand the absolute value inequality
The absolute value inequality [tex]\( |x - 6| \leq 3 \)[/tex] can be interpreted as:
[tex]\[ -3 \leq x - 6 \leq 3 \][/tex]
Step 3: Solve the compound inequality
We can break this compound inequality down into two parts to solve for [tex]\( x \)[/tex]:
1. Solve the left part:
[tex]\[ -3 \leq x - 6 \][/tex]
Add 6 to both sides to isolate [tex]\( x \)[/tex]:
[tex]\[ -3 + 6 \leq x \][/tex]
[tex]\[ 3 \leq x \][/tex]
2. Solve the right part:
[tex]\[ x - 6 \leq 3 \][/tex]
Add 6 to both sides to isolate [tex]\( x \)[/tex]:
[tex]\[ x - 6 + 6 \leq 3 + 6 \][/tex]
[tex]\[ x \leq 9 \][/tex]
Step 4: Combine the results
Combining [tex]\( 3 \leq x \)[/tex] and [tex]\( x \leq 9 \)[/tex] gives us the final interval:
[tex]\[ 3 \leq x \leq 9 \][/tex]
So, the solution to the inequality [tex]\( 3|x - 6| \leq 9 \)[/tex] is:
[tex]\[ 3 \leq x \leq 9 \][/tex]
This means that any [tex]\( x \)[/tex] between 3 and 9, inclusive, satisfies the inequality.
Given inequality:
[tex]\[ 3|x - 6| \leq 9 \][/tex]
Step 1: Isolate the absolute value expression
First, divide both sides of the inequality by 3:
[tex]\[ |x - 6| \leq 3 \][/tex]
Step 2: Understand the absolute value inequality
The absolute value inequality [tex]\( |x - 6| \leq 3 \)[/tex] can be interpreted as:
[tex]\[ -3 \leq x - 6 \leq 3 \][/tex]
Step 3: Solve the compound inequality
We can break this compound inequality down into two parts to solve for [tex]\( x \)[/tex]:
1. Solve the left part:
[tex]\[ -3 \leq x - 6 \][/tex]
Add 6 to both sides to isolate [tex]\( x \)[/tex]:
[tex]\[ -3 + 6 \leq x \][/tex]
[tex]\[ 3 \leq x \][/tex]
2. Solve the right part:
[tex]\[ x - 6 \leq 3 \][/tex]
Add 6 to both sides to isolate [tex]\( x \)[/tex]:
[tex]\[ x - 6 + 6 \leq 3 + 6 \][/tex]
[tex]\[ x \leq 9 \][/tex]
Step 4: Combine the results
Combining [tex]\( 3 \leq x \)[/tex] and [tex]\( x \leq 9 \)[/tex] gives us the final interval:
[tex]\[ 3 \leq x \leq 9 \][/tex]
So, the solution to the inequality [tex]\( 3|x - 6| \leq 9 \)[/tex] is:
[tex]\[ 3 \leq x \leq 9 \][/tex]
This means that any [tex]\( x \)[/tex] between 3 and 9, inclusive, satisfies the inequality.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.