Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Consider the function [tex]f(x)=x^2 e^{8 x}[/tex].

1. [tex]f(x)[/tex] has two inflection points at [tex]x=C[/tex] and [tex]x=D[/tex] with [tex]C\ \textless \ D[/tex].
- [tex]C[/tex] is [tex]\square[/tex]
- [tex]D[/tex] is [tex]\square[/tex]

2. For each of the following intervals, determine whether [tex]f(x)[/tex] is concave up or concave down:
- [tex](-\infty, C)[/tex]: Select an answer [tex]\checkmark[/tex]
- [tex](C, D)[/tex]: Select an answer [tex]\checkmark[/tex]
- [tex](D, \infty)[/tex]: Select an answer [tex]\checkmark[/tex]


Sagot :

Answer:

[tex]\textsf{C is } \dfrac{-2 -\sqrt{2}}{8}\approx -0.4268[/tex]

[tex]\textsf{D is } \dfrac{-2 +\sqrt{2}}{8}\approx-0.0732[/tex]

(-∞, C]: concave up

[C, D]: concave down

[D, ∞): concave up

Step-by-step explanation:

Given function:

[tex]f(x)=x^2e^{8x}[/tex]

An inflection point is a point on the graph of the function where the concavity changes:

  • A function f(x) is concave up on an interval if its second derivative f''(x) > 0 on that interval.
  • A function f(x) is concave down on an interval if its second derivative f''(x) < 0 on that interval.

To find the inflection points of the given function, first find the second derivative f''(x).

Differentiate the function using the product rule.

[tex]\boxed{\begin{array}{c}\underline{\textsf{Product Rule fo Differentiation}}\\\\\textsf{If}\;y=uv\;\textsf{then:}\\\\\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}\end{array}}[/tex]

[tex]\textsf{Let }u = x^2 \implies \dfrac{\text{d}u}{\text{d}x}=2x[/tex]

[tex]\textsf{Let }v = e^{8x} \implies \dfrac{\text{d}v}{\text{d}x}=8e^{8x}[/tex]

Therefore:

[tex]f'(x)=x^2 \cdot 8e^{8x}+e^{8x}\cdot 2x \\\\\\ f'(x)=8x^2e^{8x}+2xe^{8x} \\\\\\ f'(x)=e^{8x}\left(8x^2+2x\right)[/tex]

Find the second derivative by differentiating again using the product rule.

[tex]\textsf{Let }u = e^{8x} \implies \dfrac{\text{d}u}{\text{d}x}=8e^{8x}[/tex]

[tex]\textsf{Let }v = 8x^2+2x \implies \dfrac{\text{d}v}{\text{d}x}=16x+2[/tex]

Therefore:

[tex]f''(x)=e^{8x} \cdot (16x+2)+(8x^2+2x) \cdot 8e^{8x} \\\\\\ f''(x)=16xe^{8x} +2e^{8x} + 64x^2e^{8x}+16xe^{8x} \\\\\\ f''(x)=64x^2e^{8x}+32xe^{8x} +2e^{8x} \\\\\\ f''(x)=e^{8x}\left(64x^2+32x+2\right)[/tex]

Now, set the second derivative equal to zero to find the inflection points.

[tex]f''(x)=0\\\\e^{8x}\left(64x^2+32x+2\right)=0[/tex]

Since [tex]e^{8x}\neq 0[/tex], we can solve:

[tex]64x^2+32x+2=0 \\\\2(32x^2+16x+1)=0 \\\\32x^2+16x+1=0[/tex]

Solve for x using the quadratic formula:

[tex]x=\dfrac{-16 \pm \sqrt{16^2-4(32)(1)}}{2(32)} \\\\\\ x=\dfrac{-16 \pm \sqrt{256-128}}{64} \\\\\\ x=\dfrac{-16 \pm \sqrt{128}}{64} \\\\\\ x=\dfrac{-16 \pm 8\sqrt{2}}{64} \\\\\\ x=\dfrac{-2 \pm \sqrt{2}}{8}[/tex]

Therefore, the two inflection points x = C and x = D where C ≤ D are:

[tex]\textsf{C is } \dfrac{-2 -\sqrt{2}}{8}\approx -0.4268[/tex]

[tex]\textsf{D is } \dfrac{-2 +\sqrt{2}}{8}\approx-0.0732[/tex]

[tex]\dotfill[/tex]

Now, determine the concavity on the given intervals by substituting a test value for x within each interval into the second derivative of the function.

For the interval (-∞, C], substitute the test point x = -1 into f''(x):

[tex]f''(-1)=e^{8(-1)}\left(64(-1)^2+32(-1)+2\right) \\\\ f''(-1)=e^{-8}\left(64-32+2\right) \\\\ f''(-1)=34e^{-8} \\\\ f''(-1)=0.0114057293... \\\\f''(-1) > 0[/tex]

As f''(-1) > 0, the function f(x) is concave up on the interval (-∞, C].

For the interval [C, D], substitute the test point x = -0.3 into f''(x):

[tex]f''(-0.3)=e^{8(-0.3)}\left(64(-0.3)^2+32(-0.3)+2\right) \\\\ f''(-0.3)=e^{-2.4}\left(5.76-9.6+2\right) \\\\ f''(-0.3)=-1.84e^{-2.4} \\\\ f''(-0.3)=-0.166921034... \\\\f''(-0.3) < 0[/tex]

As f''(-0.3) < 0, the function f(x) is concave down on the interval [C, D].

For the interval [D, ∞), substitute the test point x = 0 into f''(x):

[tex]f''(0)=e^{8(0)}\left(64(0)^2+32(0)+2\right) \\\\ f''(0)=e^{0}\left(0-0+2\right) \\\\ f''(0)=2 \\\\f''(0) > 0[/tex]

As f''(0) > 0, the function f(x) is concave up on the interval [D, ∞).

Therefore:

  • (-∞, C]: concave up
  • [C, D]: concave down
  • [D, ∞): concave up
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.