Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Consider the function [tex]f(x)=x^2 e^{8 x}[/tex].

1. [tex]f(x)[/tex] has two inflection points at [tex]x=C[/tex] and [tex]x=D[/tex] with [tex]C\ \textless \ D[/tex].
- [tex]C[/tex] is [tex]\square[/tex]
- [tex]D[/tex] is [tex]\square[/tex]

2. For each of the following intervals, determine whether [tex]f(x)[/tex] is concave up or concave down:
- [tex](-\infty, C)[/tex]: Select an answer [tex]\checkmark[/tex]
- [tex](C, D)[/tex]: Select an answer [tex]\checkmark[/tex]
- [tex](D, \infty)[/tex]: Select an answer [tex]\checkmark[/tex]


Sagot :

Answer:

[tex]\textsf{C is } \dfrac{-2 -\sqrt{2}}{8}\approx -0.4268[/tex]

[tex]\textsf{D is } \dfrac{-2 +\sqrt{2}}{8}\approx-0.0732[/tex]

(-∞, C]: concave up

[C, D]: concave down

[D, ∞): concave up

Step-by-step explanation:

Given function:

[tex]f(x)=x^2e^{8x}[/tex]

An inflection point is a point on the graph of the function where the concavity changes:

  • A function f(x) is concave up on an interval if its second derivative f''(x) > 0 on that interval.
  • A function f(x) is concave down on an interval if its second derivative f''(x) < 0 on that interval.

To find the inflection points of the given function, first find the second derivative f''(x).

Differentiate the function using the product rule.

[tex]\boxed{\begin{array}{c}\underline{\textsf{Product Rule fo Differentiation}}\\\\\textsf{If}\;y=uv\;\textsf{then:}\\\\\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}\end{array}}[/tex]

[tex]\textsf{Let }u = x^2 \implies \dfrac{\text{d}u}{\text{d}x}=2x[/tex]

[tex]\textsf{Let }v = e^{8x} \implies \dfrac{\text{d}v}{\text{d}x}=8e^{8x}[/tex]

Therefore:

[tex]f'(x)=x^2 \cdot 8e^{8x}+e^{8x}\cdot 2x \\\\\\ f'(x)=8x^2e^{8x}+2xe^{8x} \\\\\\ f'(x)=e^{8x}\left(8x^2+2x\right)[/tex]

Find the second derivative by differentiating again using the product rule.

[tex]\textsf{Let }u = e^{8x} \implies \dfrac{\text{d}u}{\text{d}x}=8e^{8x}[/tex]

[tex]\textsf{Let }v = 8x^2+2x \implies \dfrac{\text{d}v}{\text{d}x}=16x+2[/tex]

Therefore:

[tex]f''(x)=e^{8x} \cdot (16x+2)+(8x^2+2x) \cdot 8e^{8x} \\\\\\ f''(x)=16xe^{8x} +2e^{8x} + 64x^2e^{8x}+16xe^{8x} \\\\\\ f''(x)=64x^2e^{8x}+32xe^{8x} +2e^{8x} \\\\\\ f''(x)=e^{8x}\left(64x^2+32x+2\right)[/tex]

Now, set the second derivative equal to zero to find the inflection points.

[tex]f''(x)=0\\\\e^{8x}\left(64x^2+32x+2\right)=0[/tex]

Since [tex]e^{8x}\neq 0[/tex], we can solve:

[tex]64x^2+32x+2=0 \\\\2(32x^2+16x+1)=0 \\\\32x^2+16x+1=0[/tex]

Solve for x using the quadratic formula:

[tex]x=\dfrac{-16 \pm \sqrt{16^2-4(32)(1)}}{2(32)} \\\\\\ x=\dfrac{-16 \pm \sqrt{256-128}}{64} \\\\\\ x=\dfrac{-16 \pm \sqrt{128}}{64} \\\\\\ x=\dfrac{-16 \pm 8\sqrt{2}}{64} \\\\\\ x=\dfrac{-2 \pm \sqrt{2}}{8}[/tex]

Therefore, the two inflection points x = C and x = D where C ≤ D are:

[tex]\textsf{C is } \dfrac{-2 -\sqrt{2}}{8}\approx -0.4268[/tex]

[tex]\textsf{D is } \dfrac{-2 +\sqrt{2}}{8}\approx-0.0732[/tex]

[tex]\dotfill[/tex]

Now, determine the concavity on the given intervals by substituting a test value for x within each interval into the second derivative of the function.

For the interval (-∞, C], substitute the test point x = -1 into f''(x):

[tex]f''(-1)=e^{8(-1)}\left(64(-1)^2+32(-1)+2\right) \\\\ f''(-1)=e^{-8}\left(64-32+2\right) \\\\ f''(-1)=34e^{-8} \\\\ f''(-1)=0.0114057293... \\\\f''(-1) > 0[/tex]

As f''(-1) > 0, the function f(x) is concave up on the interval (-∞, C].

For the interval [C, D], substitute the test point x = -0.3 into f''(x):

[tex]f''(-0.3)=e^{8(-0.3)}\left(64(-0.3)^2+32(-0.3)+2\right) \\\\ f''(-0.3)=e^{-2.4}\left(5.76-9.6+2\right) \\\\ f''(-0.3)=-1.84e^{-2.4} \\\\ f''(-0.3)=-0.166921034... \\\\f''(-0.3) < 0[/tex]

As f''(-0.3) < 0, the function f(x) is concave down on the interval [C, D].

For the interval [D, ∞), substitute the test point x = 0 into f''(x):

[tex]f''(0)=e^{8(0)}\left(64(0)^2+32(0)+2\right) \\\\ f''(0)=e^{0}\left(0-0+2\right) \\\\ f''(0)=2 \\\\f''(0) > 0[/tex]

As f''(0) > 0, the function f(x) is concave up on the interval [D, ∞).

Therefore:

  • (-∞, C]: concave up
  • [C, D]: concave down
  • [D, ∞): concave up
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.