Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Consider the function [tex]f(x)=x^2 e^{8 x}[/tex].

1. [tex]f(x)[/tex] has two inflection points at [tex]x=C[/tex] and [tex]x=D[/tex] with [tex]C\ \textless \ D[/tex].
- [tex]C[/tex] is [tex]\square[/tex]
- [tex]D[/tex] is [tex]\square[/tex]

2. For each of the following intervals, determine whether [tex]f(x)[/tex] is concave up or concave down:
- [tex](-\infty, C)[/tex]: Select an answer [tex]\checkmark[/tex]
- [tex](C, D)[/tex]: Select an answer [tex]\checkmark[/tex]
- [tex](D, \infty)[/tex]: Select an answer [tex]\checkmark[/tex]


Sagot :

Answer:

[tex]\textsf{C is } \dfrac{-2 -\sqrt{2}}{8}\approx -0.4268[/tex]

[tex]\textsf{D is } \dfrac{-2 +\sqrt{2}}{8}\approx-0.0732[/tex]

(-∞, C]: concave up

[C, D]: concave down

[D, ∞): concave up

Step-by-step explanation:

Given function:

[tex]f(x)=x^2e^{8x}[/tex]

An inflection point is a point on the graph of the function where the concavity changes:

  • A function f(x) is concave up on an interval if its second derivative f''(x) > 0 on that interval.
  • A function f(x) is concave down on an interval if its second derivative f''(x) < 0 on that interval.

To find the inflection points of the given function, first find the second derivative f''(x).

Differentiate the function using the product rule.

[tex]\boxed{\begin{array}{c}\underline{\textsf{Product Rule fo Differentiation}}\\\\\textsf{If}\;y=uv\;\textsf{then:}\\\\\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}\end{array}}[/tex]

[tex]\textsf{Let }u = x^2 \implies \dfrac{\text{d}u}{\text{d}x}=2x[/tex]

[tex]\textsf{Let }v = e^{8x} \implies \dfrac{\text{d}v}{\text{d}x}=8e^{8x}[/tex]

Therefore:

[tex]f'(x)=x^2 \cdot 8e^{8x}+e^{8x}\cdot 2x \\\\\\ f'(x)=8x^2e^{8x}+2xe^{8x} \\\\\\ f'(x)=e^{8x}\left(8x^2+2x\right)[/tex]

Find the second derivative by differentiating again using the product rule.

[tex]\textsf{Let }u = e^{8x} \implies \dfrac{\text{d}u}{\text{d}x}=8e^{8x}[/tex]

[tex]\textsf{Let }v = 8x^2+2x \implies \dfrac{\text{d}v}{\text{d}x}=16x+2[/tex]

Therefore:

[tex]f''(x)=e^{8x} \cdot (16x+2)+(8x^2+2x) \cdot 8e^{8x} \\\\\\ f''(x)=16xe^{8x} +2e^{8x} + 64x^2e^{8x}+16xe^{8x} \\\\\\ f''(x)=64x^2e^{8x}+32xe^{8x} +2e^{8x} \\\\\\ f''(x)=e^{8x}\left(64x^2+32x+2\right)[/tex]

Now, set the second derivative equal to zero to find the inflection points.

[tex]f''(x)=0\\\\e^{8x}\left(64x^2+32x+2\right)=0[/tex]

Since [tex]e^{8x}\neq 0[/tex], we can solve:

[tex]64x^2+32x+2=0 \\\\2(32x^2+16x+1)=0 \\\\32x^2+16x+1=0[/tex]

Solve for x using the quadratic formula:

[tex]x=\dfrac{-16 \pm \sqrt{16^2-4(32)(1)}}{2(32)} \\\\\\ x=\dfrac{-16 \pm \sqrt{256-128}}{64} \\\\\\ x=\dfrac{-16 \pm \sqrt{128}}{64} \\\\\\ x=\dfrac{-16 \pm 8\sqrt{2}}{64} \\\\\\ x=\dfrac{-2 \pm \sqrt{2}}{8}[/tex]

Therefore, the two inflection points x = C and x = D where C ≤ D are:

[tex]\textsf{C is } \dfrac{-2 -\sqrt{2}}{8}\approx -0.4268[/tex]

[tex]\textsf{D is } \dfrac{-2 +\sqrt{2}}{8}\approx-0.0732[/tex]

[tex]\dotfill[/tex]

Now, determine the concavity on the given intervals by substituting a test value for x within each interval into the second derivative of the function.

For the interval (-∞, C], substitute the test point x = -1 into f''(x):

[tex]f''(-1)=e^{8(-1)}\left(64(-1)^2+32(-1)+2\right) \\\\ f''(-1)=e^{-8}\left(64-32+2\right) \\\\ f''(-1)=34e^{-8} \\\\ f''(-1)=0.0114057293... \\\\f''(-1) > 0[/tex]

As f''(-1) > 0, the function f(x) is concave up on the interval (-∞, C].

For the interval [C, D], substitute the test point x = -0.3 into f''(x):

[tex]f''(-0.3)=e^{8(-0.3)}\left(64(-0.3)^2+32(-0.3)+2\right) \\\\ f''(-0.3)=e^{-2.4}\left(5.76-9.6+2\right) \\\\ f''(-0.3)=-1.84e^{-2.4} \\\\ f''(-0.3)=-0.166921034... \\\\f''(-0.3) < 0[/tex]

As f''(-0.3) < 0, the function f(x) is concave down on the interval [C, D].

For the interval [D, ∞), substitute the test point x = 0 into f''(x):

[tex]f''(0)=e^{8(0)}\left(64(0)^2+32(0)+2\right) \\\\ f''(0)=e^{0}\left(0-0+2\right) \\\\ f''(0)=2 \\\\f''(0) > 0[/tex]

As f''(0) > 0, the function f(x) is concave up on the interval [D, ∞).

Therefore:

  • (-∞, C]: concave up
  • [C, D]: concave down
  • [D, ∞): concave up
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.