Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
[tex]\textsf{C is } \dfrac{-2 -\sqrt{2}}{8}\approx -0.4268[/tex]
[tex]\textsf{D is } \dfrac{-2 +\sqrt{2}}{8}\approx-0.0732[/tex]
(-∞, C]: concave up
[C, D]: concave down
[D, ∞): concave up
Step-by-step explanation:
Given function:
[tex]f(x)=x^2e^{8x}[/tex]
An inflection point is a point on the graph of the function where the concavity changes:
- A function f(x) is concave up on an interval if its second derivative f''(x) > 0 on that interval.
- A function f(x) is concave down on an interval if its second derivative f''(x) < 0 on that interval.
To find the inflection points of the given function, first find the second derivative f''(x).
Differentiate the function using the product rule.
[tex]\boxed{\begin{array}{c}\underline{\textsf{Product Rule fo Differentiation}}\\\\\textsf{If}\;y=uv\;\textsf{then:}\\\\\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}\end{array}}[/tex]
[tex]\textsf{Let }u = x^2 \implies \dfrac{\text{d}u}{\text{d}x}=2x[/tex]
[tex]\textsf{Let }v = e^{8x} \implies \dfrac{\text{d}v}{\text{d}x}=8e^{8x}[/tex]
Therefore:
[tex]f'(x)=x^2 \cdot 8e^{8x}+e^{8x}\cdot 2x \\\\\\ f'(x)=8x^2e^{8x}+2xe^{8x} \\\\\\ f'(x)=e^{8x}\left(8x^2+2x\right)[/tex]
Find the second derivative by differentiating again using the product rule.
[tex]\textsf{Let }u = e^{8x} \implies \dfrac{\text{d}u}{\text{d}x}=8e^{8x}[/tex]
[tex]\textsf{Let }v = 8x^2+2x \implies \dfrac{\text{d}v}{\text{d}x}=16x+2[/tex]
Therefore:
[tex]f''(x)=e^{8x} \cdot (16x+2)+(8x^2+2x) \cdot 8e^{8x} \\\\\\ f''(x)=16xe^{8x} +2e^{8x} + 64x^2e^{8x}+16xe^{8x} \\\\\\ f''(x)=64x^2e^{8x}+32xe^{8x} +2e^{8x} \\\\\\ f''(x)=e^{8x}\left(64x^2+32x+2\right)[/tex]
Now, set the second derivative equal to zero to find the inflection points.
[tex]f''(x)=0\\\\e^{8x}\left(64x^2+32x+2\right)=0[/tex]
Since [tex]e^{8x}\neq 0[/tex], we can solve:
[tex]64x^2+32x+2=0 \\\\2(32x^2+16x+1)=0 \\\\32x^2+16x+1=0[/tex]
Solve for x using the quadratic formula:
[tex]x=\dfrac{-16 \pm \sqrt{16^2-4(32)(1)}}{2(32)} \\\\\\ x=\dfrac{-16 \pm \sqrt{256-128}}{64} \\\\\\ x=\dfrac{-16 \pm \sqrt{128}}{64} \\\\\\ x=\dfrac{-16 \pm 8\sqrt{2}}{64} \\\\\\ x=\dfrac{-2 \pm \sqrt{2}}{8}[/tex]
Therefore, the two inflection points x = C and x = D where C ≤ D are:
[tex]\textsf{C is } \dfrac{-2 -\sqrt{2}}{8}\approx -0.4268[/tex]
[tex]\textsf{D is } \dfrac{-2 +\sqrt{2}}{8}\approx-0.0732[/tex]
[tex]\dotfill[/tex]
Now, determine the concavity on the given intervals by substituting a test value for x within each interval into the second derivative of the function.
For the interval (-∞, C], substitute the test point x = -1 into f''(x):
[tex]f''(-1)=e^{8(-1)}\left(64(-1)^2+32(-1)+2\right) \\\\ f''(-1)=e^{-8}\left(64-32+2\right) \\\\ f''(-1)=34e^{-8} \\\\ f''(-1)=0.0114057293... \\\\f''(-1) > 0[/tex]
As f''(-1) > 0, the function f(x) is concave up on the interval (-∞, C].
For the interval [C, D], substitute the test point x = -0.3 into f''(x):
[tex]f''(-0.3)=e^{8(-0.3)}\left(64(-0.3)^2+32(-0.3)+2\right) \\\\ f''(-0.3)=e^{-2.4}\left(5.76-9.6+2\right) \\\\ f''(-0.3)=-1.84e^{-2.4} \\\\ f''(-0.3)=-0.166921034... \\\\f''(-0.3) < 0[/tex]
As f''(-0.3) < 0, the function f(x) is concave down on the interval [C, D].
For the interval [D, ∞), substitute the test point x = 0 into f''(x):
[tex]f''(0)=e^{8(0)}\left(64(0)^2+32(0)+2\right) \\\\ f''(0)=e^{0}\left(0-0+2\right) \\\\ f''(0)=2 \\\\f''(0) > 0[/tex]
As f''(0) > 0, the function f(x) is concave up on the interval [D, ∞).
Therefore:
- (-∞, C]: concave up
- [C, D]: concave down
- [D, ∞): concave up
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.