At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
[tex]\textsf{C is } \dfrac{-2 -\sqrt{2}}{8}\approx -0.4268[/tex]
[tex]\textsf{D is } \dfrac{-2 +\sqrt{2}}{8}\approx-0.0732[/tex]
(-∞, C]: concave up
[C, D]: concave down
[D, ∞): concave up
Step-by-step explanation:
Given function:
[tex]f(x)=x^2e^{8x}[/tex]
An inflection point is a point on the graph of the function where the concavity changes:
- A function f(x) is concave up on an interval if its second derivative f''(x) > 0 on that interval.
- A function f(x) is concave down on an interval if its second derivative f''(x) < 0 on that interval.
To find the inflection points of the given function, first find the second derivative f''(x).
Differentiate the function using the product rule.
[tex]\boxed{\begin{array}{c}\underline{\textsf{Product Rule fo Differentiation}}\\\\\textsf{If}\;y=uv\;\textsf{then:}\\\\\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}\end{array}}[/tex]
[tex]\textsf{Let }u = x^2 \implies \dfrac{\text{d}u}{\text{d}x}=2x[/tex]
[tex]\textsf{Let }v = e^{8x} \implies \dfrac{\text{d}v}{\text{d}x}=8e^{8x}[/tex]
Therefore:
[tex]f'(x)=x^2 \cdot 8e^{8x}+e^{8x}\cdot 2x \\\\\\ f'(x)=8x^2e^{8x}+2xe^{8x} \\\\\\ f'(x)=e^{8x}\left(8x^2+2x\right)[/tex]
Find the second derivative by differentiating again using the product rule.
[tex]\textsf{Let }u = e^{8x} \implies \dfrac{\text{d}u}{\text{d}x}=8e^{8x}[/tex]
[tex]\textsf{Let }v = 8x^2+2x \implies \dfrac{\text{d}v}{\text{d}x}=16x+2[/tex]
Therefore:
[tex]f''(x)=e^{8x} \cdot (16x+2)+(8x^2+2x) \cdot 8e^{8x} \\\\\\ f''(x)=16xe^{8x} +2e^{8x} + 64x^2e^{8x}+16xe^{8x} \\\\\\ f''(x)=64x^2e^{8x}+32xe^{8x} +2e^{8x} \\\\\\ f''(x)=e^{8x}\left(64x^2+32x+2\right)[/tex]
Now, set the second derivative equal to zero to find the inflection points.
[tex]f''(x)=0\\\\e^{8x}\left(64x^2+32x+2\right)=0[/tex]
Since [tex]e^{8x}\neq 0[/tex], we can solve:
[tex]64x^2+32x+2=0 \\\\2(32x^2+16x+1)=0 \\\\32x^2+16x+1=0[/tex]
Solve for x using the quadratic formula:
[tex]x=\dfrac{-16 \pm \sqrt{16^2-4(32)(1)}}{2(32)} \\\\\\ x=\dfrac{-16 \pm \sqrt{256-128}}{64} \\\\\\ x=\dfrac{-16 \pm \sqrt{128}}{64} \\\\\\ x=\dfrac{-16 \pm 8\sqrt{2}}{64} \\\\\\ x=\dfrac{-2 \pm \sqrt{2}}{8}[/tex]
Therefore, the two inflection points x = C and x = D where C ≤ D are:
[tex]\textsf{C is } \dfrac{-2 -\sqrt{2}}{8}\approx -0.4268[/tex]
[tex]\textsf{D is } \dfrac{-2 +\sqrt{2}}{8}\approx-0.0732[/tex]
[tex]\dotfill[/tex]
Now, determine the concavity on the given intervals by substituting a test value for x within each interval into the second derivative of the function.
For the interval (-∞, C], substitute the test point x = -1 into f''(x):
[tex]f''(-1)=e^{8(-1)}\left(64(-1)^2+32(-1)+2\right) \\\\ f''(-1)=e^{-8}\left(64-32+2\right) \\\\ f''(-1)=34e^{-8} \\\\ f''(-1)=0.0114057293... \\\\f''(-1) > 0[/tex]
As f''(-1) > 0, the function f(x) is concave up on the interval (-∞, C].
For the interval [C, D], substitute the test point x = -0.3 into f''(x):
[tex]f''(-0.3)=e^{8(-0.3)}\left(64(-0.3)^2+32(-0.3)+2\right) \\\\ f''(-0.3)=e^{-2.4}\left(5.76-9.6+2\right) \\\\ f''(-0.3)=-1.84e^{-2.4} \\\\ f''(-0.3)=-0.166921034... \\\\f''(-0.3) < 0[/tex]
As f''(-0.3) < 0, the function f(x) is concave down on the interval [C, D].
For the interval [D, ∞), substitute the test point x = 0 into f''(x):
[tex]f''(0)=e^{8(0)}\left(64(0)^2+32(0)+2\right) \\\\ f''(0)=e^{0}\left(0-0+2\right) \\\\ f''(0)=2 \\\\f''(0) > 0[/tex]
As f''(0) > 0, the function f(x) is concave up on the interval [D, ∞).
Therefore:
- (-∞, C]: concave up
- [C, D]: concave down
- [D, ∞): concave up
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.