At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve for [tex]\( x \)[/tex] given the collinear points [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex] where [tex]\( B \)[/tex] is between [tex]\( A \)[/tex] and [tex]\( C \)[/tex], we can use a property of collinear points: the sum of segments [tex]\( AB \)[/tex] and [tex]\( BC \)[/tex] should equal the segment [tex]\( AC \)[/tex].
Given:
- [tex]\( AB = 5x - 1 \)[/tex]
- [tex]\( BC = 14 \)[/tex]
- [tex]\( AC = 25 - x \)[/tex]
We can write the equation:
[tex]\[ AB + BC = AC \][/tex]
Substituting the given lengths:
[tex]\[ (5x - 1) + 14 = 25 - x \][/tex]
Next, combine the constant terms on the left side:
[tex]\[ 5x - 1 + 14 = 25 - x \][/tex]
[tex]\[ 5x + 13 = 25 - x \][/tex]
Now, move the [tex]\( x \)[/tex] terms to one side of the equation and the constants to the other side to isolate [tex]\( x \)[/tex]:
[tex]\[ 5x + x = 25 - 13 \][/tex]
[tex]\[ 6x = 12 \][/tex]
Divide both sides by 6:
[tex]\[ x = 2 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] is:
[tex]\[ \boxed{2} \][/tex]
Given:
- [tex]\( AB = 5x - 1 \)[/tex]
- [tex]\( BC = 14 \)[/tex]
- [tex]\( AC = 25 - x \)[/tex]
We can write the equation:
[tex]\[ AB + BC = AC \][/tex]
Substituting the given lengths:
[tex]\[ (5x - 1) + 14 = 25 - x \][/tex]
Next, combine the constant terms on the left side:
[tex]\[ 5x - 1 + 14 = 25 - x \][/tex]
[tex]\[ 5x + 13 = 25 - x \][/tex]
Now, move the [tex]\( x \)[/tex] terms to one side of the equation and the constants to the other side to isolate [tex]\( x \)[/tex]:
[tex]\[ 5x + x = 25 - 13 \][/tex]
[tex]\[ 6x = 12 \][/tex]
Divide both sides by 6:
[tex]\[ x = 2 \][/tex]
Therefore, the value of [tex]\( x \)[/tex] is:
[tex]\[ \boxed{2} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.