Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's solve the system of linear equations step-by-step to determine the correct statement.
The given system of equations is:
1. [tex]\(2y - 4x = 6\)[/tex]
2. [tex]\(y = 2x + 3\)[/tex]
To find the solution, we can substitute the expression for [tex]\(y\)[/tex] from the second equation into the first equation.
### Step 1: Substitute [tex]\(y = 2x + 3\)[/tex] into [tex]\(2y - 4x = 6\)[/tex]
The first equation is:
[tex]\[2y - 4x = 6\][/tex]
Plug in [tex]\(y = 2x + 3\)[/tex]:
[tex]\[2(2x + 3) - 4x = 6\][/tex]
### Step 2: Simplify the equation
Distribute the 2:
[tex]\[4x + 6 - 4x = 6\][/tex]
### Step 3: Combine like terms
[tex]\[4x - 4x + 6 = 6\][/tex]
[tex]\[0x + 6 = 6\][/tex]
[tex]\[6 = 6\][/tex]
### Analysis:
The equation simplifies to [tex]\(6 = 6\)[/tex], which is always true regardless of the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]. This means the two equations are not strict lines. Instead, the first equation is just a multiple of the second.
### Conclusion:
When you substitute [tex]\(y = 2x + 3\)[/tex] into [tex]\(2y - 4x = 6\)[/tex] and arrive at a tautology (a true statement like [tex]\(6 = 6\)[/tex]), it indicates that the two lines are actually the same line.
Therefore, the equations represent the same line, and there are infinitely many solutions since every point on the line [tex]\(y = 2x + 3\)[/tex] is a solution to the system.
The correct answer is:
D. The system has infinitely many solutions.
The given system of equations is:
1. [tex]\(2y - 4x = 6\)[/tex]
2. [tex]\(y = 2x + 3\)[/tex]
To find the solution, we can substitute the expression for [tex]\(y\)[/tex] from the second equation into the first equation.
### Step 1: Substitute [tex]\(y = 2x + 3\)[/tex] into [tex]\(2y - 4x = 6\)[/tex]
The first equation is:
[tex]\[2y - 4x = 6\][/tex]
Plug in [tex]\(y = 2x + 3\)[/tex]:
[tex]\[2(2x + 3) - 4x = 6\][/tex]
### Step 2: Simplify the equation
Distribute the 2:
[tex]\[4x + 6 - 4x = 6\][/tex]
### Step 3: Combine like terms
[tex]\[4x - 4x + 6 = 6\][/tex]
[tex]\[0x + 6 = 6\][/tex]
[tex]\[6 = 6\][/tex]
### Analysis:
The equation simplifies to [tex]\(6 = 6\)[/tex], which is always true regardless of the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]. This means the two equations are not strict lines. Instead, the first equation is just a multiple of the second.
### Conclusion:
When you substitute [tex]\(y = 2x + 3\)[/tex] into [tex]\(2y - 4x = 6\)[/tex] and arrive at a tautology (a true statement like [tex]\(6 = 6\)[/tex]), it indicates that the two lines are actually the same line.
Therefore, the equations represent the same line, and there are infinitely many solutions since every point on the line [tex]\(y = 2x + 3\)[/tex] is a solution to the system.
The correct answer is:
D. The system has infinitely many solutions.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.