At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's analyze the quadratic equation given by [tex]\(0 = x^2 - 4x + 5\)[/tex].
For a quadratic equation of the form [tex]\(ax^2 + bx + c\)[/tex], the discriminant is given by the expression [tex]\(b^2 - 4ac\)[/tex]. The discriminant provides information about the nature of the roots of the quadratic equation:
1. If the discriminant is greater than 0 ([tex]\(\Delta > 0\)[/tex]), the equation has two distinct real solutions.
2. If the discriminant is equal to 0 ([tex]\(\Delta = 0\)[/tex]), the equation has exactly one real solution.
3. If the discriminant is less than 0 ([tex]\(\Delta < 0\)[/tex]), the equation has no real solutions (the solutions are complex or imaginary).
In the given equation [tex]\(0 = x^2 - 4x + 5\)[/tex]:
- The coefficient [tex]\(a\)[/tex] is 1 (the coefficient of [tex]\(x^2\)[/tex]).
- The coefficient [tex]\(b\)[/tex] is -4 (the coefficient of [tex]\(x\)[/tex]).
- The constant term [tex]\(c\)[/tex] is 5.
Now let's compute the discriminant using the formula [tex]\(b^2 - 4ac\)[/tex]:
[tex]\[ b^2 - 4ac = (-4)^2 - 4 \cdot 1 \cdot 5 \][/tex]
Calculating the values:
[tex]\[ (-4)^2 = 16 \][/tex]
[tex]\[ 4 \cdot 1 \cdot 5 = 20 \][/tex]
[tex]\[ b^2 - 4ac = 16 - 20 = -4 \][/tex]
The value of the discriminant is [tex]\(-4\)[/tex]. Since [tex]\(-4\)[/tex] is less than 0 ([tex]\(\Delta < 0\)[/tex]), this indicates that the quadratic equation has no real solutions. Instead, the solutions will be complex or imaginary.
Therefore, the correct interpretation is:
[tex]\[ \boxed{\text{The discriminant is } -4 \text{, so the equation has no real solutions.}} \][/tex]
For a quadratic equation of the form [tex]\(ax^2 + bx + c\)[/tex], the discriminant is given by the expression [tex]\(b^2 - 4ac\)[/tex]. The discriminant provides information about the nature of the roots of the quadratic equation:
1. If the discriminant is greater than 0 ([tex]\(\Delta > 0\)[/tex]), the equation has two distinct real solutions.
2. If the discriminant is equal to 0 ([tex]\(\Delta = 0\)[/tex]), the equation has exactly one real solution.
3. If the discriminant is less than 0 ([tex]\(\Delta < 0\)[/tex]), the equation has no real solutions (the solutions are complex or imaginary).
In the given equation [tex]\(0 = x^2 - 4x + 5\)[/tex]:
- The coefficient [tex]\(a\)[/tex] is 1 (the coefficient of [tex]\(x^2\)[/tex]).
- The coefficient [tex]\(b\)[/tex] is -4 (the coefficient of [tex]\(x\)[/tex]).
- The constant term [tex]\(c\)[/tex] is 5.
Now let's compute the discriminant using the formula [tex]\(b^2 - 4ac\)[/tex]:
[tex]\[ b^2 - 4ac = (-4)^2 - 4 \cdot 1 \cdot 5 \][/tex]
Calculating the values:
[tex]\[ (-4)^2 = 16 \][/tex]
[tex]\[ 4 \cdot 1 \cdot 5 = 20 \][/tex]
[tex]\[ b^2 - 4ac = 16 - 20 = -4 \][/tex]
The value of the discriminant is [tex]\(-4\)[/tex]. Since [tex]\(-4\)[/tex] is less than 0 ([tex]\(\Delta < 0\)[/tex]), this indicates that the quadratic equation has no real solutions. Instead, the solutions will be complex or imaginary.
Therefore, the correct interpretation is:
[tex]\[ \boxed{\text{The discriminant is } -4 \text{, so the equation has no real solutions.}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.