Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the probability that the child will not have color-deficient vision, we need to analyze the genetic information provided.
Firstly, let's understand the genotypes of the parents:
- The mother’s genotype is [tex]\( X^R X \)[/tex], meaning she has one normal vision allele ([tex]\( X^R \)[/tex]) and one allele without specifying if it's normal or mutant (implicitly normal for simplicity).
- The father's genotype is [tex]\( X^R Y \)[/tex], meaning he carries a normal vision allele ([tex]\( X^R \)[/tex]) and a Y chromosome (which does not carry the trait for color vision).
Next, we need to construct a Punnett square to visualize the possible genotype combinations of their offspring.
The possible gametes from each parent are:
- Mother: [tex]\( X^R \)[/tex] or [tex]\( X \)[/tex]
- Father: [tex]\( X^R \)[/tex] or [tex]\( Y \)[/tex]
Forming the Punnett square, we have:
[tex]\[ \begin{array}{c|cc} & X^R & X \\ \hline X^R & X^R X^R & X^R X \\ Y & X^R Y & X Y \\ \end{array} \][/tex]
The possible genotypes of the children are:
1. [tex]\( X^R X^R \)[/tex] - Normal vision (female)
2. [tex]\( X^R X \)[/tex] - Normal vision (female, carrier for color deficiency)
3. [tex]\( X^R Y \)[/tex] - Normal vision (male)
4. [tex]\( X Y \)[/tex] - Color-deficient vision (male)
Now, let's count the total outcomes and determine which ones lead to a child without color-deficient vision:
- There are 4 possible combinations in the Punnett square.
- Three out of these four combinations ( [tex]\( X^R X^R \)[/tex], [tex]\( X^R X \)[/tex], and [tex]\( X^R Y \)[/tex] ) result in a child without color-deficient vision.
Therefore, the probability that the child will not have color-deficient vision is:
[tex]\[ \frac{\text{Number of non color-deficient outcomes}}{\text{Total number of outcomes}} = \frac{3}{4} = 0.75 \][/tex]
Thus, the probability that the child will not have color-deficient vision is [tex]\( 0.75 \)[/tex].
The correct answer is:
B. 0.75
Firstly, let's understand the genotypes of the parents:
- The mother’s genotype is [tex]\( X^R X \)[/tex], meaning she has one normal vision allele ([tex]\( X^R \)[/tex]) and one allele without specifying if it's normal or mutant (implicitly normal for simplicity).
- The father's genotype is [tex]\( X^R Y \)[/tex], meaning he carries a normal vision allele ([tex]\( X^R \)[/tex]) and a Y chromosome (which does not carry the trait for color vision).
Next, we need to construct a Punnett square to visualize the possible genotype combinations of their offspring.
The possible gametes from each parent are:
- Mother: [tex]\( X^R \)[/tex] or [tex]\( X \)[/tex]
- Father: [tex]\( X^R \)[/tex] or [tex]\( Y \)[/tex]
Forming the Punnett square, we have:
[tex]\[ \begin{array}{c|cc} & X^R & X \\ \hline X^R & X^R X^R & X^R X \\ Y & X^R Y & X Y \\ \end{array} \][/tex]
The possible genotypes of the children are:
1. [tex]\( X^R X^R \)[/tex] - Normal vision (female)
2. [tex]\( X^R X \)[/tex] - Normal vision (female, carrier for color deficiency)
3. [tex]\( X^R Y \)[/tex] - Normal vision (male)
4. [tex]\( X Y \)[/tex] - Color-deficient vision (male)
Now, let's count the total outcomes and determine which ones lead to a child without color-deficient vision:
- There are 4 possible combinations in the Punnett square.
- Three out of these four combinations ( [tex]\( X^R X^R \)[/tex], [tex]\( X^R X \)[/tex], and [tex]\( X^R Y \)[/tex] ) result in a child without color-deficient vision.
Therefore, the probability that the child will not have color-deficient vision is:
[tex]\[ \frac{\text{Number of non color-deficient outcomes}}{\text{Total number of outcomes}} = \frac{3}{4} = 0.75 \][/tex]
Thus, the probability that the child will not have color-deficient vision is [tex]\( 0.75 \)[/tex].
The correct answer is:
B. 0.75
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.