Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

The doubling period of a bacterial population is 10 minutes.

1. At time [tex]t = 100[/tex] minutes, the bacterial population was 60,000. What was the initial population at time [tex]t = 0[/tex]? [tex]$\square$[/tex]

2. Find the size of the bacterial population after 4 hours. [tex]$\square$[/tex]


Sagot :

To solve this problem, we need to follow a step-by-step approach using the given information about the doubling period and the bacterial population.

### Part 1: Finding the Initial Population at Time [tex]\( t = 0 \)[/tex]

1. Given Information:
- Doubling period [tex]\( T_d = 10 \)[/tex] minutes
- Population at [tex]\( t = 100 \)[/tex] minutes is [tex]\( P_{100} = 60000 \)[/tex]

2. Determine the number of doublings between time [tex]\( t = 0 \)[/tex] and [tex]\( t = 100 \)[/tex] minutes:
[tex]\[ \text{Number of doublings} = \frac{\text{Total time}}{\text{Doubling period}} = \frac{100 \text{ minutes}}{10 \text{ minutes}} = 10 \][/tex]

3. Finding the initial population [tex]\( P_0 \)[/tex]:
We know that the population doubles 10 times from [tex]\( t = 0 \)[/tex] to [tex]\( t = 100 \)[/tex] minutes. Therefore, the relationship between the initial population [tex]\( P_0 \)[/tex] and the population at [tex]\( t = 100 \)[/tex] minutes is:
[tex]\[ P_{100} = P_0 \times 2^{\text{Number of doublings}} \][/tex]
Substituting the known values:
[tex]\[ 60000 = P_0 \times 2^{10} \][/tex]
Solving for [tex]\( P_0 \)[/tex]:
[tex]\[ P_0 = \frac{60000}{2^{10}} = \frac{60000}{1024} \approx 58.59375 \][/tex]
So, the initial population at time [tex]\( t = 0 \)[/tex] was approximately [tex]\( 58.59375 \)[/tex].

### Part 2: Finding the Population After 4 Hours

4. Given Information:
- 4 hours = 240 minutes

5. Determine the number of doublings in 240 minutes:
[tex]\[ \text{Number of doublings} = \frac{240 \text{ minutes}}{10 \text{ minutes}} = 24 \][/tex]

6. Finding the population after 4 hours:
We now use the initial population [tex]\( P_0 \)[/tex] found in Part 1 to calculate the population after 4 hours. The relationship between the initial population and the population after 240 minutes is:
[tex]\[ P_{240} = P_0 \times 2^{\text{Number of doublings}} \][/tex]
Substituting the known values:
[tex]\[ P_{240} = 58.59375 \times 2^{24} \][/tex]
Since [tex]\( 2^{24} = 16,777,216 \)[/tex]:
[tex]\[ P_{240} = 58.59375 \times 16,777,216 = 983,040,000 \][/tex]
So, the bacterial population after 4 hours is [tex]\( 983,040,000 \)[/tex].

### Final Answers:
- The initial population at time [tex]\( t = 0 \)[/tex] was approximately [tex]\( 58.59375 \)[/tex].
- The population after 4 hours (240 minutes) will be [tex]\( 983,040,000 \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.