Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the future value of Mary's investment using the compound interest formula, we follow these steps:
1. Identify the given values:
- Principal amount ([tex]\( P \)[/tex]) = \[tex]$1000 - Annual interest rate (\( r \)) = 0.05 (since 5% as a decimal is 0.05) - Number of times interest is compounded per year (\( n \)) = 4 - Number of years (\( t \)) = 5 2. Write the compound interest formula: \[ R = P \left(1 + \frac{r}{n}\right)^{nt} \] 3. Substitute the given values into the formula: \[ R = 1000 \left(1 + \frac{0.05}{4}\right)^{4 \cdot 5} \] 4. Calculate the value inside the parentheses: \[ 1 + \frac{0.05}{4} = 1 + 0.0125 = 1.0125 \] 5. Calculate the exponent: \[ nt = 4 \cdot 5 = 20 \] 6. Raise the value inside the parentheses to the power of 20: \[ (1.0125)^{20} \] 7. Multiply this result by the principal amount (\( P \)): \[ R = 1000 \times (1.0125)^{20} \approx 1000 \times 1.2820372317085844 \] 8. Calculate the final amount: \[ R \approx 1282.0372317085844 \] So, the future value of Mary's investment after 5 years will be approximately \$[/tex]1,282.04.
Based on the calculations, the correct answer is:
[tex]\[ \$ 1,282.04 \][/tex]
1. Identify the given values:
- Principal amount ([tex]\( P \)[/tex]) = \[tex]$1000 - Annual interest rate (\( r \)) = 0.05 (since 5% as a decimal is 0.05) - Number of times interest is compounded per year (\( n \)) = 4 - Number of years (\( t \)) = 5 2. Write the compound interest formula: \[ R = P \left(1 + \frac{r}{n}\right)^{nt} \] 3. Substitute the given values into the formula: \[ R = 1000 \left(1 + \frac{0.05}{4}\right)^{4 \cdot 5} \] 4. Calculate the value inside the parentheses: \[ 1 + \frac{0.05}{4} = 1 + 0.0125 = 1.0125 \] 5. Calculate the exponent: \[ nt = 4 \cdot 5 = 20 \] 6. Raise the value inside the parentheses to the power of 20: \[ (1.0125)^{20} \] 7. Multiply this result by the principal amount (\( P \)): \[ R = 1000 \times (1.0125)^{20} \approx 1000 \times 1.2820372317085844 \] 8. Calculate the final amount: \[ R \approx 1282.0372317085844 \] So, the future value of Mary's investment after 5 years will be approximately \$[/tex]1,282.04.
Based on the calculations, the correct answer is:
[tex]\[ \$ 1,282.04 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.