Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's analyze the provided dataset step-by-step and fill in the missing information for the box plot.
The given data set is:
[tex]\[ 2, 3, 5, 6, 8, 9, 12. \][/tex]
### Step-by-Step Solution
1. Arrange the numbers in order:
The data is already ordered from lowest to highest:
[tex]\[ 2, 3, 5, 6, 8, 9, 12. \][/tex]
2. Identify the minimum value:
The minimum value of the dataset is:
[tex]\[ 2. \][/tex]
3. Identify the maximum value:
The maximum value of the dataset is:
[tex]\[ 12. \][/tex]
4. Calculate the median:
For a dataset of 7 numbers, the median is the middle number (4th number in the ordered list):
[tex]\[ \text{Median} = 6. \][/tex]
5. Calculate the lower quartile (Q1):
The lower quartile (Q1) is the median of the lower half of the dataset. The lower half of the dataset (excluding the median) is:
[tex]\[ 2, 3, 5. \][/tex]
The median of this subset is the middle number:
[tex]\[ Q1 = 3. \][/tex]
To summarize, the analysis provides the following:
- Minimum value: [tex]\( 2 \)[/tex]
- Maximum value: [tex]\( 12 \)[/tex]
- Median (Q2): [tex]\( 6 \)[/tex]
- Lower quartile (Q1): [tex]\( 3 \)[/tex]
Therefore, for the given box plot:
- The minimum value is [tex]\( 2 \)[/tex] [tex]\(\checkmark\)[/tex].
- The maximum value is [tex]\( 12 \)[/tex] [tex]\(\checkmark\)[/tex].
- The median of the data (Q2) is [tex]\( 6 \)[/tex] [tex]\(\checkmark\)[/tex].
- The lower quartile (Q1) is [tex]\( 3 \)[/tex] [tex]\(\square\)[/tex].
The given data set is:
[tex]\[ 2, 3, 5, 6, 8, 9, 12. \][/tex]
### Step-by-Step Solution
1. Arrange the numbers in order:
The data is already ordered from lowest to highest:
[tex]\[ 2, 3, 5, 6, 8, 9, 12. \][/tex]
2. Identify the minimum value:
The minimum value of the dataset is:
[tex]\[ 2. \][/tex]
3. Identify the maximum value:
The maximum value of the dataset is:
[tex]\[ 12. \][/tex]
4. Calculate the median:
For a dataset of 7 numbers, the median is the middle number (4th number in the ordered list):
[tex]\[ \text{Median} = 6. \][/tex]
5. Calculate the lower quartile (Q1):
The lower quartile (Q1) is the median of the lower half of the dataset. The lower half of the dataset (excluding the median) is:
[tex]\[ 2, 3, 5. \][/tex]
The median of this subset is the middle number:
[tex]\[ Q1 = 3. \][/tex]
To summarize, the analysis provides the following:
- Minimum value: [tex]\( 2 \)[/tex]
- Maximum value: [tex]\( 12 \)[/tex]
- Median (Q2): [tex]\( 6 \)[/tex]
- Lower quartile (Q1): [tex]\( 3 \)[/tex]
Therefore, for the given box plot:
- The minimum value is [tex]\( 2 \)[/tex] [tex]\(\checkmark\)[/tex].
- The maximum value is [tex]\( 12 \)[/tex] [tex]\(\checkmark\)[/tex].
- The median of the data (Q2) is [tex]\( 6 \)[/tex] [tex]\(\checkmark\)[/tex].
- The lower quartile (Q1) is [tex]\( 3 \)[/tex] [tex]\(\square\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.