Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, we need to determine the area of the surface generated by revolving the given curve around the [tex]\( x \)[/tex]-axis.
The general formula for the surface area [tex]\( S \)[/tex] of a solid of revolution about the [tex]\( x \)[/tex]-axis is:
[tex]\[ S = 2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \][/tex]
Given the curve [tex]\( y = \frac{x^3}{9} \)[/tex] and the interval [tex]\( 0 \leq x \leq 2 \)[/tex]:
1. Determine [tex]\( y \)[/tex] and [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ y = \frac{x^3}{9} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} \left( \frac{x^3}{9} \right) = \frac{3x^2}{9} = \frac{x^2}{3} \][/tex]
2. Compute [tex]\( 1 + \left(\frac{dy}{dx}\right)^2 \)[/tex]:
[tex]\[ \left(\frac{dy}{dx}\right)^2 = \left(\frac{x^2}{3}\right)^2 = \frac{x^4}{9} \][/tex]
[tex]\[ 1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{x^4}{9} \][/tex]
3. Set up the integral:
[tex]\[ S = 2\pi \int_{0}^{2} \left( \frac{x^3}{9} \right) \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
Now, we have to integrate this expression:
[tex]\[ S = 2\pi \int_{0}^{2} \frac{x^3}{9} \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
Simplify the constant factor:
[tex]\[ S = \frac{2\pi}{9} \int_{0}^{2} x^3 \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
So, the integral set up for the area of the surface generated by revolving the curve [tex]\( y = \frac{x^3}{9} \)[/tex] around the [tex]\( x \)[/tex]-axis over the interval [tex]\([0, 2]\)[/tex] is:
[tex]\[ S = \frac{2\pi}{9} \int_{0}^{2} x^3 \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
The general formula for the surface area [tex]\( S \)[/tex] of a solid of revolution about the [tex]\( x \)[/tex]-axis is:
[tex]\[ S = 2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \][/tex]
Given the curve [tex]\( y = \frac{x^3}{9} \)[/tex] and the interval [tex]\( 0 \leq x \leq 2 \)[/tex]:
1. Determine [tex]\( y \)[/tex] and [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ y = \frac{x^3}{9} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} \left( \frac{x^3}{9} \right) = \frac{3x^2}{9} = \frac{x^2}{3} \][/tex]
2. Compute [tex]\( 1 + \left(\frac{dy}{dx}\right)^2 \)[/tex]:
[tex]\[ \left(\frac{dy}{dx}\right)^2 = \left(\frac{x^2}{3}\right)^2 = \frac{x^4}{9} \][/tex]
[tex]\[ 1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{x^4}{9} \][/tex]
3. Set up the integral:
[tex]\[ S = 2\pi \int_{0}^{2} \left( \frac{x^3}{9} \right) \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
Now, we have to integrate this expression:
[tex]\[ S = 2\pi \int_{0}^{2} \frac{x^3}{9} \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
Simplify the constant factor:
[tex]\[ S = \frac{2\pi}{9} \int_{0}^{2} x^3 \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
So, the integral set up for the area of the surface generated by revolving the curve [tex]\( y = \frac{x^3}{9} \)[/tex] around the [tex]\( x \)[/tex]-axis over the interval [tex]\([0, 2]\)[/tex] is:
[tex]\[ S = \frac{2\pi}{9} \int_{0}^{2} x^3 \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.