Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve this problem, we need to determine the area of the surface generated by revolving the given curve around the [tex]\( x \)[/tex]-axis.
The general formula for the surface area [tex]\( S \)[/tex] of a solid of revolution about the [tex]\( x \)[/tex]-axis is:
[tex]\[ S = 2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \][/tex]
Given the curve [tex]\( y = \frac{x^3}{9} \)[/tex] and the interval [tex]\( 0 \leq x \leq 2 \)[/tex]:
1. Determine [tex]\( y \)[/tex] and [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ y = \frac{x^3}{9} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} \left( \frac{x^3}{9} \right) = \frac{3x^2}{9} = \frac{x^2}{3} \][/tex]
2. Compute [tex]\( 1 + \left(\frac{dy}{dx}\right)^2 \)[/tex]:
[tex]\[ \left(\frac{dy}{dx}\right)^2 = \left(\frac{x^2}{3}\right)^2 = \frac{x^4}{9} \][/tex]
[tex]\[ 1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{x^4}{9} \][/tex]
3. Set up the integral:
[tex]\[ S = 2\pi \int_{0}^{2} \left( \frac{x^3}{9} \right) \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
Now, we have to integrate this expression:
[tex]\[ S = 2\pi \int_{0}^{2} \frac{x^3}{9} \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
Simplify the constant factor:
[tex]\[ S = \frac{2\pi}{9} \int_{0}^{2} x^3 \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
So, the integral set up for the area of the surface generated by revolving the curve [tex]\( y = \frac{x^3}{9} \)[/tex] around the [tex]\( x \)[/tex]-axis over the interval [tex]\([0, 2]\)[/tex] is:
[tex]\[ S = \frac{2\pi}{9} \int_{0}^{2} x^3 \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
The general formula for the surface area [tex]\( S \)[/tex] of a solid of revolution about the [tex]\( x \)[/tex]-axis is:
[tex]\[ S = 2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \][/tex]
Given the curve [tex]\( y = \frac{x^3}{9} \)[/tex] and the interval [tex]\( 0 \leq x \leq 2 \)[/tex]:
1. Determine [tex]\( y \)[/tex] and [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ y = \frac{x^3}{9} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} \left( \frac{x^3}{9} \right) = \frac{3x^2}{9} = \frac{x^2}{3} \][/tex]
2. Compute [tex]\( 1 + \left(\frac{dy}{dx}\right)^2 \)[/tex]:
[tex]\[ \left(\frac{dy}{dx}\right)^2 = \left(\frac{x^2}{3}\right)^2 = \frac{x^4}{9} \][/tex]
[tex]\[ 1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{x^4}{9} \][/tex]
3. Set up the integral:
[tex]\[ S = 2\pi \int_{0}^{2} \left( \frac{x^3}{9} \right) \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
Now, we have to integrate this expression:
[tex]\[ S = 2\pi \int_{0}^{2} \frac{x^3}{9} \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
Simplify the constant factor:
[tex]\[ S = \frac{2\pi}{9} \int_{0}^{2} x^3 \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
So, the integral set up for the area of the surface generated by revolving the curve [tex]\( y = \frac{x^3}{9} \)[/tex] around the [tex]\( x \)[/tex]-axis over the interval [tex]\([0, 2]\)[/tex] is:
[tex]\[ S = \frac{2\pi}{9} \int_{0}^{2} x^3 \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.