Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve this problem, we need to determine the area of the surface generated by revolving the given curve around the [tex]\( x \)[/tex]-axis.
The general formula for the surface area [tex]\( S \)[/tex] of a solid of revolution about the [tex]\( x \)[/tex]-axis is:
[tex]\[ S = 2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \][/tex]
Given the curve [tex]\( y = \frac{x^3}{9} \)[/tex] and the interval [tex]\( 0 \leq x \leq 2 \)[/tex]:
1. Determine [tex]\( y \)[/tex] and [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ y = \frac{x^3}{9} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} \left( \frac{x^3}{9} \right) = \frac{3x^2}{9} = \frac{x^2}{3} \][/tex]
2. Compute [tex]\( 1 + \left(\frac{dy}{dx}\right)^2 \)[/tex]:
[tex]\[ \left(\frac{dy}{dx}\right)^2 = \left(\frac{x^2}{3}\right)^2 = \frac{x^4}{9} \][/tex]
[tex]\[ 1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{x^4}{9} \][/tex]
3. Set up the integral:
[tex]\[ S = 2\pi \int_{0}^{2} \left( \frac{x^3}{9} \right) \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
Now, we have to integrate this expression:
[tex]\[ S = 2\pi \int_{0}^{2} \frac{x^3}{9} \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
Simplify the constant factor:
[tex]\[ S = \frac{2\pi}{9} \int_{0}^{2} x^3 \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
So, the integral set up for the area of the surface generated by revolving the curve [tex]\( y = \frac{x^3}{9} \)[/tex] around the [tex]\( x \)[/tex]-axis over the interval [tex]\([0, 2]\)[/tex] is:
[tex]\[ S = \frac{2\pi}{9} \int_{0}^{2} x^3 \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
The general formula for the surface area [tex]\( S \)[/tex] of a solid of revolution about the [tex]\( x \)[/tex]-axis is:
[tex]\[ S = 2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \][/tex]
Given the curve [tex]\( y = \frac{x^3}{9} \)[/tex] and the interval [tex]\( 0 \leq x \leq 2 \)[/tex]:
1. Determine [tex]\( y \)[/tex] and [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ y = \frac{x^3}{9} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} \left( \frac{x^3}{9} \right) = \frac{3x^2}{9} = \frac{x^2}{3} \][/tex]
2. Compute [tex]\( 1 + \left(\frac{dy}{dx}\right)^2 \)[/tex]:
[tex]\[ \left(\frac{dy}{dx}\right)^2 = \left(\frac{x^2}{3}\right)^2 = \frac{x^4}{9} \][/tex]
[tex]\[ 1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{x^4}{9} \][/tex]
3. Set up the integral:
[tex]\[ S = 2\pi \int_{0}^{2} \left( \frac{x^3}{9} \right) \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
Now, we have to integrate this expression:
[tex]\[ S = 2\pi \int_{0}^{2} \frac{x^3}{9} \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
Simplify the constant factor:
[tex]\[ S = \frac{2\pi}{9} \int_{0}^{2} x^3 \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
So, the integral set up for the area of the surface generated by revolving the curve [tex]\( y = \frac{x^3}{9} \)[/tex] around the [tex]\( x \)[/tex]-axis over the interval [tex]\([0, 2]\)[/tex] is:
[tex]\[ S = \frac{2\pi}{9} \int_{0}^{2} x^3 \sqrt{1 + \frac{x^4}{9}} \, dx \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.