Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which expression is a prime polynomial, we need to understand what makes a polynomial "prime". A prime polynomial over the integers is one that cannot be factored into the product of two non-constant polynomials with integer coefficients.
Let's analyze each of the given options step-by-step to see if they can be factored:
### Option A: [tex]\(x^3 - 1\)[/tex]
The polynomial [tex]\(x^3 - 1\)[/tex] can be factored using the difference of cubes formula:
[tex]\[ x^3 - 1 = (x - 1)(x^2 + x + 1) \][/tex]
So, [tex]\(x^3 - 1\)[/tex] is not a prime polynomial because it can be factored.
### Option B: [tex]\(x^2 + 1\)[/tex]
To test if [tex]\(x^2 + 1\)[/tex] can be factored over the integers, let's see if there are any integer solutions to the equation:
[tex]\[ x^2 + 1 = 0 \implies x^2 = -1 \][/tex]
Since there are no real roots to this equation (as the square of a real number cannot be negative), [tex]\(x^2 + 1\)[/tex] cannot be factored further over the integers. Hence, [tex]\(x^2 + 1\)[/tex] is a prime polynomial.
### Option C: [tex]\(x^3 + 1\)[/tex]
The polynomial [tex]\(x^3 + 1\)[/tex] can be factored using the sum of cubes formula:
[tex]\[ x^3 + 1 = (x + 1)(x^2 - x + 1) \][/tex]
So, [tex]\(x^3 + 1\)[/tex] is not a prime polynomial because it can be factored.
### Option D: [tex]\(x^2 - 1\)[/tex]
The polynomial [tex]\(x^2 - 1\)[/tex] can be factored using the difference of squares formula:
[tex]\[ x^2 - 1 = (x - 1)(x + 1) \][/tex]
So, [tex]\(x^2 - 1\)[/tex] is not a prime polynomial because it can be factored.
Based on the analysis above, the only prime polynomial among the given options is:
B. [tex]\(x^2 + 1\)[/tex]
Let's analyze each of the given options step-by-step to see if they can be factored:
### Option A: [tex]\(x^3 - 1\)[/tex]
The polynomial [tex]\(x^3 - 1\)[/tex] can be factored using the difference of cubes formula:
[tex]\[ x^3 - 1 = (x - 1)(x^2 + x + 1) \][/tex]
So, [tex]\(x^3 - 1\)[/tex] is not a prime polynomial because it can be factored.
### Option B: [tex]\(x^2 + 1\)[/tex]
To test if [tex]\(x^2 + 1\)[/tex] can be factored over the integers, let's see if there are any integer solutions to the equation:
[tex]\[ x^2 + 1 = 0 \implies x^2 = -1 \][/tex]
Since there are no real roots to this equation (as the square of a real number cannot be negative), [tex]\(x^2 + 1\)[/tex] cannot be factored further over the integers. Hence, [tex]\(x^2 + 1\)[/tex] is a prime polynomial.
### Option C: [tex]\(x^3 + 1\)[/tex]
The polynomial [tex]\(x^3 + 1\)[/tex] can be factored using the sum of cubes formula:
[tex]\[ x^3 + 1 = (x + 1)(x^2 - x + 1) \][/tex]
So, [tex]\(x^3 + 1\)[/tex] is not a prime polynomial because it can be factored.
### Option D: [tex]\(x^2 - 1\)[/tex]
The polynomial [tex]\(x^2 - 1\)[/tex] can be factored using the difference of squares formula:
[tex]\[ x^2 - 1 = (x - 1)(x + 1) \][/tex]
So, [tex]\(x^2 - 1\)[/tex] is not a prime polynomial because it can be factored.
Based on the analysis above, the only prime polynomial among the given options is:
B. [tex]\(x^2 + 1\)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.