Answered

Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Type the correct answer in each box. Use numerals instead of words.

The zeros of the function [tex]f(x) = -(x+1)(x-3)(x+2)[/tex] are [tex]-1[/tex], [tex]3[/tex], and [tex]\square[/tex], and the [tex]y[/tex]-intercept of the function is located at [tex](0, \square)[/tex].


Sagot :

To find the zeros of the function [tex]\( f(x) = -(x + 1)(x - 3)(x + 2) \)[/tex], we set [tex]\( f(x) = 0 \)[/tex] and solve for [tex]\( x \)[/tex]:

[tex]\[ -(x + 1)(x - 3)(x + 2) = 0 \][/tex]

Setting each factor to zero:

[tex]\[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \][/tex]
[tex]\[ x - 3 = 0 \quad \Rightarrow \quad x = 3 \][/tex]
[tex]\[ x + 2 = 0 \quad \Rightarrow \quad x = -2 \][/tex]

Thus, the zeros of the function [tex]\( f(x) \)[/tex] are [tex]\(-1\)[/tex], [tex]\(3\)[/tex], and [tex]\(-2\)[/tex].

Next, to find the y-intercept, we evaluate the function at [tex]\( x = 0 \)[/tex]:

[tex]\[ f(0) = -(0 + 1)(0 - 3)(0 + 2) \][/tex]
[tex]\[ f(0) = -(1)(-3)(2) \][/tex]
[tex]\[ f(0) = -(-6) \][/tex]
[tex]\[ f(0) = 6 \][/tex]

Therefore, the y-intercept is located at [tex]\((0, 6)\)[/tex].

So, the completed statement is:
The zeros of the function [tex]\(f(x) = -(x + 1)(x - 3)(x + 2)\)[/tex] are [tex]\(-1, 3\)[/tex], and [tex]\(-2\)[/tex], and the [tex]\(y\)[/tex]-intercept of the function is located at [tex]\((0, 6)\)[/tex].