Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To identify the graph of the equation [tex]\( y = 20 \left(\frac{1}{4}\right)^x \)[/tex], let's break down the components of this exponential function and understand its behavior step-by-step.
### 1. Understanding the Exponential Function
The equation [tex]\( y = 20 \left(\frac{1}{4}\right)^x \)[/tex] is in the form of [tex]\( y = a \cdot b^x \)[/tex]:
- [tex]\( a = 20 \)[/tex]
- [tex]\( b = \frac{1}{4} \)[/tex]
Here, [tex]\( a \)[/tex] is a constant multiplier and [tex]\( b \)[/tex] is the base of the exponent.
### 2. The Base [tex]\(\frac{1}{4}\)[/tex]
Since [tex]\( b = \frac{1}{4} \)[/tex], which is a fraction less than 1:
- The function [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] is a decreasing function.
- As [tex]\( x \)[/tex] increases, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] approaches 0.
### 3. The Multiplier 20
The multiplier [tex]\( a = 20 \)[/tex] scales the function vertically:
- It stretches the graph upwards by a factor of 20.
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 20 \cdot 1 = 20 \)[/tex].
### 4. Behavior and Key Points
Let's evaluate the function at some specific points to understand its shape:
- When [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 20 \left(\frac{1}{4}\right)^0 = 20 \cdot 1 = 20 \][/tex]
The graph passes through the point [tex]\((0, 20)\)[/tex].
- When [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 20 \left(\frac{1}{4}\right)^1 = 20 \cdot \frac{1}{4} = 5 \][/tex]
The graph passes through the point [tex]\((1, 5)\)[/tex].
- When [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 20 \left(\frac{1}{4}\right)^{-1} = 20 \cdot 4 = 80 \][/tex]
The graph passes through the point [tex]\((-1, 80)\)[/tex].
- As [tex]\( x \)[/tex] approaches infinity ([tex]\(+\infty\)[/tex]):
[tex]\[ \left(\frac{1}{4}\right)^x \to 0 \quad \text{and hence} \quad y \to 0 \][/tex]
The graph asymptotically approaches the x-axis but never touches it.
- As [tex]\( x \)[/tex] approaches negative infinity ([tex]\(-\infty\)[/tex]):
[tex]\[ \left(\frac{1}{4}\right)^x \to \infty \quad \text{and hence} \quad y \to \infty \][/tex]
The graph rises sharply to very large values.
### 5. Graphing the Function
Given these key points and behavior:
- The graph is a decreasing curve.
- It starts from [tex]\( y = \infty \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\(-\infty\)[/tex].
- It intercepts at [tex]\( y = 20 \)[/tex] when [tex]\( x = 0 \)[/tex].
- It approaches [tex]\( y = 0 \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex], but never touches the x-axis.
### 6. Sketching the Graph
You can visualize the graph with the following properties:
- Passes through [tex]\((-1, 80)\)[/tex], [tex]\((0, 20)\)[/tex], and [tex]\((1, 5)\)[/tex].
- Asymptotically approaches the x-axis.
The graph looks like this:

Always remember, for [tex]\( x \)[/tex] approaching negative values, the value of y grows rapidly, forming an exponential decay curve. For positive values of [tex]\( x \)[/tex], the function value diminishes towards zero.
By understanding these steps, you can accurately plot the exponential function [tex]\( y = 20 \left(\frac{1}{4}\right)^x \)[/tex] and predict its graphical behavior.
### 1. Understanding the Exponential Function
The equation [tex]\( y = 20 \left(\frac{1}{4}\right)^x \)[/tex] is in the form of [tex]\( y = a \cdot b^x \)[/tex]:
- [tex]\( a = 20 \)[/tex]
- [tex]\( b = \frac{1}{4} \)[/tex]
Here, [tex]\( a \)[/tex] is a constant multiplier and [tex]\( b \)[/tex] is the base of the exponent.
### 2. The Base [tex]\(\frac{1}{4}\)[/tex]
Since [tex]\( b = \frac{1}{4} \)[/tex], which is a fraction less than 1:
- The function [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] is a decreasing function.
- As [tex]\( x \)[/tex] increases, [tex]\( \left(\frac{1}{4}\right)^x \)[/tex] approaches 0.
### 3. The Multiplier 20
The multiplier [tex]\( a = 20 \)[/tex] scales the function vertically:
- It stretches the graph upwards by a factor of 20.
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 20 \cdot 1 = 20 \)[/tex].
### 4. Behavior and Key Points
Let's evaluate the function at some specific points to understand its shape:
- When [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 20 \left(\frac{1}{4}\right)^0 = 20 \cdot 1 = 20 \][/tex]
The graph passes through the point [tex]\((0, 20)\)[/tex].
- When [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 20 \left(\frac{1}{4}\right)^1 = 20 \cdot \frac{1}{4} = 5 \][/tex]
The graph passes through the point [tex]\((1, 5)\)[/tex].
- When [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 20 \left(\frac{1}{4}\right)^{-1} = 20 \cdot 4 = 80 \][/tex]
The graph passes through the point [tex]\((-1, 80)\)[/tex].
- As [tex]\( x \)[/tex] approaches infinity ([tex]\(+\infty\)[/tex]):
[tex]\[ \left(\frac{1}{4}\right)^x \to 0 \quad \text{and hence} \quad y \to 0 \][/tex]
The graph asymptotically approaches the x-axis but never touches it.
- As [tex]\( x \)[/tex] approaches negative infinity ([tex]\(-\infty\)[/tex]):
[tex]\[ \left(\frac{1}{4}\right)^x \to \infty \quad \text{and hence} \quad y \to \infty \][/tex]
The graph rises sharply to very large values.
### 5. Graphing the Function
Given these key points and behavior:
- The graph is a decreasing curve.
- It starts from [tex]\( y = \infty \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\(-\infty\)[/tex].
- It intercepts at [tex]\( y = 20 \)[/tex] when [tex]\( x = 0 \)[/tex].
- It approaches [tex]\( y = 0 \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex], but never touches the x-axis.
### 6. Sketching the Graph
You can visualize the graph with the following properties:
- Passes through [tex]\((-1, 80)\)[/tex], [tex]\((0, 20)\)[/tex], and [tex]\((1, 5)\)[/tex].
- Asymptotically approaches the x-axis.
The graph looks like this:

Always remember, for [tex]\( x \)[/tex] approaching negative values, the value of y grows rapidly, forming an exponential decay curve. For positive values of [tex]\( x \)[/tex], the function value diminishes towards zero.
By understanding these steps, you can accurately plot the exponential function [tex]\( y = 20 \left(\frac{1}{4}\right)^x \)[/tex] and predict its graphical behavior.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.