Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's analyze the data provided in the table to determine whether the distance run and the elevation are linear or nonlinear functions.
### Step 1: Understanding Linear and Nonlinear Functions
A linear function exhibits a constant rate of change. This means that the difference between consecutive values of the dependent variable (distance or elevation) should be constant when the independent variable (time) changes by a consistent amount.
### Step 2: Analyzing Distance
We need to calculate the rate of change in distance for each consecutive time interval:
[tex]\[ \begin{align*} \text{Rate from } t = 1 \text{ to } t = 2 & : 0.38 - 0.19 = 0.19 \\ \text{Rate from } t = 2 \text{ to } t = 3 & : 0.57 - 0.38 = 0.19 \\ \text{Rate from } t = 3 \text{ to } t = 4 & : 0.76 - 0.57 = 0.19 \\ \text{Rate from } t = 4 \text{ to } t = 5 & : 0.95 - 0.76 = 0.19 \\ \text{Rate from } t = 5 \text{ to } t = 6 & : 1.14 - 0.95 = 0.19 \\ \end{align*} \][/tex]
Since all the rates of change in distance are the same (0.19), the distance is a linear function of time.
### Step 3: Analyzing Elevation
Next, we calculate the rate of change in elevation for each consecutive time interval:
[tex]\[ \begin{align*} \text{Rate from } t = 1 \text{ to } t = 2 & : 26 - 12 = 14 \\ \text{Rate from } t = 2 \text{ to } t = 3 & : 67 - 26 = 41 \\ \text{Rate from } t = 3 \text{ to } t = 4 & : 98 - 67 = 31 \\ \text{Rate from } t = 4 \text{ to } t = 5 & : 124 - 98 = 26 \\ \text{Rate from } t = 5 \text{ to } t = 6 & : 145 - 124 = 21 \\ \end{align*} \][/tex]
These differences are not constant, so the elevation as a function of time is nonlinear.
### Step 4: Final Conclusion
Based on the analysis:
- The distance run is a linear function since it has a constant rate of change.
- The elevation is a nonlinear function since it does not have a constant rate of change.
Thus, the correct statement is:
"Both the distance run and the elevation are nonlinear functions because they do not have constant rates of change."
### Step 1: Understanding Linear and Nonlinear Functions
A linear function exhibits a constant rate of change. This means that the difference between consecutive values of the dependent variable (distance or elevation) should be constant when the independent variable (time) changes by a consistent amount.
### Step 2: Analyzing Distance
We need to calculate the rate of change in distance for each consecutive time interval:
[tex]\[ \begin{align*} \text{Rate from } t = 1 \text{ to } t = 2 & : 0.38 - 0.19 = 0.19 \\ \text{Rate from } t = 2 \text{ to } t = 3 & : 0.57 - 0.38 = 0.19 \\ \text{Rate from } t = 3 \text{ to } t = 4 & : 0.76 - 0.57 = 0.19 \\ \text{Rate from } t = 4 \text{ to } t = 5 & : 0.95 - 0.76 = 0.19 \\ \text{Rate from } t = 5 \text{ to } t = 6 & : 1.14 - 0.95 = 0.19 \\ \end{align*} \][/tex]
Since all the rates of change in distance are the same (0.19), the distance is a linear function of time.
### Step 3: Analyzing Elevation
Next, we calculate the rate of change in elevation for each consecutive time interval:
[tex]\[ \begin{align*} \text{Rate from } t = 1 \text{ to } t = 2 & : 26 - 12 = 14 \\ \text{Rate from } t = 2 \text{ to } t = 3 & : 67 - 26 = 41 \\ \text{Rate from } t = 3 \text{ to } t = 4 & : 98 - 67 = 31 \\ \text{Rate from } t = 4 \text{ to } t = 5 & : 124 - 98 = 26 \\ \text{Rate from } t = 5 \text{ to } t = 6 & : 145 - 124 = 21 \\ \end{align*} \][/tex]
These differences are not constant, so the elevation as a function of time is nonlinear.
### Step 4: Final Conclusion
Based on the analysis:
- The distance run is a linear function since it has a constant rate of change.
- The elevation is a nonlinear function since it does not have a constant rate of change.
Thus, the correct statement is:
"Both the distance run and the elevation are nonlinear functions because they do not have constant rates of change."
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.