Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve for [tex]\( y' \)[/tex] and find the slope of the tangent line at the point [tex]\((2, 2)\)[/tex] for the given equation
[tex]\[ \sqrt{12 + y^2} - x^3 + 4 = 0, \][/tex]
follow these steps:
### Step 1: Implicit Differentiation
Differentiate both sides of the equation with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \left( \sqrt{12 + y^2} - x^3 + 4 \right) = \frac{d}{dx}(0). \][/tex]
The left-hand side simplifies using the chain rule.
1. For the term [tex]\( \sqrt{12 + y^2} \)[/tex]:
[tex]\[ \frac{d}{dx} \left( \sqrt{12 + y^2} \right) = \frac{1}{2\sqrt{12 + y^2}} \cdot \frac{d}{dx}(12 + y^2) = \frac{1}{2\sqrt{12 + y^2}} \cdot 2y \cdot \frac{dy}{dx}. \][/tex]
Therefore,
[tex]\[ \frac{d}{dx} \left( \sqrt{12 + y^2} \right) = \frac{y}{\sqrt{12 + y^2}} \cdot y'. \][/tex]
2. For the term [tex]\( -x^3 \)[/tex]:
[tex]\[ \frac{d}{dx} \left( -x^3 \right) = -3x^2. \][/tex]
3. The term [tex]\( +4 \)[/tex] is a constant, so its derivative is [tex]\( 0 \)[/tex].
Putting it all together, we have:
[tex]\[ \frac{y}{\sqrt{12 + y^2}} \cdot y' - 3x^2 = 0. \][/tex]
### Step 2: Solve for [tex]\( y' \)[/tex]
To isolate [tex]\( y' \)[/tex]:
[tex]\[ \frac{y}{\sqrt{12 + y^2}} \cdot y' = 3x^2. \][/tex]
[tex]\[ y' = \frac{3x^2 \sqrt{12 + y^2}}{y}. \][/tex]
### Step 3: Find [tex]\( y' \)[/tex] at the Point [tex]\( (2, 2) \)[/tex]
Substitute [tex]\( x = 2 \)[/tex] and [tex]\( y = 2 \)[/tex] into the equation for [tex]\( y' \)[/tex]:
[tex]\[ y' = \frac{3(2)^2 \sqrt{12 + (2)^2}}{2}. \][/tex]
Calculate each part:
[tex]\[ (2)^2 = 4, \][/tex]
[tex]\[ 12 + (2)^2 = 12 + 4 = 16, \][/tex]
[tex]\[ \sqrt{16} = 4. \][/tex]
Now substitute back:
[tex]\[ y' = \frac{3 \cdot 4 \cdot 4}{2} = \frac{48}{2} = 24. \][/tex]
### Summary
Therefore, the derivative [tex]\( y' \)[/tex] in general form is:
[tex]\[ y' = \frac{3x^2 \sqrt{12 + y^2}}{y}, \][/tex]
and at the point [tex]\( (2, 2) \)[/tex], the value of [tex]\( y' \)[/tex] (the slope of the tangent line) is:
[tex]\[ \left.y^{\prime}\right|_{(2, 2)} = 24. \][/tex]
So,
[tex]\[ \begin{array}{l} y^{\prime}=\frac{3x^2 \sqrt{12 + y^2}}{y} \\ \left.y^{\prime}\right|_{(2,2)}=24 \end{array} \][/tex]
[tex]\[ \sqrt{12 + y^2} - x^3 + 4 = 0, \][/tex]
follow these steps:
### Step 1: Implicit Differentiation
Differentiate both sides of the equation with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \left( \sqrt{12 + y^2} - x^3 + 4 \right) = \frac{d}{dx}(0). \][/tex]
The left-hand side simplifies using the chain rule.
1. For the term [tex]\( \sqrt{12 + y^2} \)[/tex]:
[tex]\[ \frac{d}{dx} \left( \sqrt{12 + y^2} \right) = \frac{1}{2\sqrt{12 + y^2}} \cdot \frac{d}{dx}(12 + y^2) = \frac{1}{2\sqrt{12 + y^2}} \cdot 2y \cdot \frac{dy}{dx}. \][/tex]
Therefore,
[tex]\[ \frac{d}{dx} \left( \sqrt{12 + y^2} \right) = \frac{y}{\sqrt{12 + y^2}} \cdot y'. \][/tex]
2. For the term [tex]\( -x^3 \)[/tex]:
[tex]\[ \frac{d}{dx} \left( -x^3 \right) = -3x^2. \][/tex]
3. The term [tex]\( +4 \)[/tex] is a constant, so its derivative is [tex]\( 0 \)[/tex].
Putting it all together, we have:
[tex]\[ \frac{y}{\sqrt{12 + y^2}} \cdot y' - 3x^2 = 0. \][/tex]
### Step 2: Solve for [tex]\( y' \)[/tex]
To isolate [tex]\( y' \)[/tex]:
[tex]\[ \frac{y}{\sqrt{12 + y^2}} \cdot y' = 3x^2. \][/tex]
[tex]\[ y' = \frac{3x^2 \sqrt{12 + y^2}}{y}. \][/tex]
### Step 3: Find [tex]\( y' \)[/tex] at the Point [tex]\( (2, 2) \)[/tex]
Substitute [tex]\( x = 2 \)[/tex] and [tex]\( y = 2 \)[/tex] into the equation for [tex]\( y' \)[/tex]:
[tex]\[ y' = \frac{3(2)^2 \sqrt{12 + (2)^2}}{2}. \][/tex]
Calculate each part:
[tex]\[ (2)^2 = 4, \][/tex]
[tex]\[ 12 + (2)^2 = 12 + 4 = 16, \][/tex]
[tex]\[ \sqrt{16} = 4. \][/tex]
Now substitute back:
[tex]\[ y' = \frac{3 \cdot 4 \cdot 4}{2} = \frac{48}{2} = 24. \][/tex]
### Summary
Therefore, the derivative [tex]\( y' \)[/tex] in general form is:
[tex]\[ y' = \frac{3x^2 \sqrt{12 + y^2}}{y}, \][/tex]
and at the point [tex]\( (2, 2) \)[/tex], the value of [tex]\( y' \)[/tex] (the slope of the tangent line) is:
[tex]\[ \left.y^{\prime}\right|_{(2, 2)} = 24. \][/tex]
So,
[tex]\[ \begin{array}{l} y^{\prime}=\frac{3x^2 \sqrt{12 + y^2}}{y} \\ \left.y^{\prime}\right|_{(2,2)}=24 \end{array} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.