Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve for [tex]\( y' \)[/tex] and find the slope of the tangent line at the point [tex]\((2, 2)\)[/tex] for the given equation
[tex]\[ \sqrt{12 + y^2} - x^3 + 4 = 0, \][/tex]
follow these steps:
### Step 1: Implicit Differentiation
Differentiate both sides of the equation with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \left( \sqrt{12 + y^2} - x^3 + 4 \right) = \frac{d}{dx}(0). \][/tex]
The left-hand side simplifies using the chain rule.
1. For the term [tex]\( \sqrt{12 + y^2} \)[/tex]:
[tex]\[ \frac{d}{dx} \left( \sqrt{12 + y^2} \right) = \frac{1}{2\sqrt{12 + y^2}} \cdot \frac{d}{dx}(12 + y^2) = \frac{1}{2\sqrt{12 + y^2}} \cdot 2y \cdot \frac{dy}{dx}. \][/tex]
Therefore,
[tex]\[ \frac{d}{dx} \left( \sqrt{12 + y^2} \right) = \frac{y}{\sqrt{12 + y^2}} \cdot y'. \][/tex]
2. For the term [tex]\( -x^3 \)[/tex]:
[tex]\[ \frac{d}{dx} \left( -x^3 \right) = -3x^2. \][/tex]
3. The term [tex]\( +4 \)[/tex] is a constant, so its derivative is [tex]\( 0 \)[/tex].
Putting it all together, we have:
[tex]\[ \frac{y}{\sqrt{12 + y^2}} \cdot y' - 3x^2 = 0. \][/tex]
### Step 2: Solve for [tex]\( y' \)[/tex]
To isolate [tex]\( y' \)[/tex]:
[tex]\[ \frac{y}{\sqrt{12 + y^2}} \cdot y' = 3x^2. \][/tex]
[tex]\[ y' = \frac{3x^2 \sqrt{12 + y^2}}{y}. \][/tex]
### Step 3: Find [tex]\( y' \)[/tex] at the Point [tex]\( (2, 2) \)[/tex]
Substitute [tex]\( x = 2 \)[/tex] and [tex]\( y = 2 \)[/tex] into the equation for [tex]\( y' \)[/tex]:
[tex]\[ y' = \frac{3(2)^2 \sqrt{12 + (2)^2}}{2}. \][/tex]
Calculate each part:
[tex]\[ (2)^2 = 4, \][/tex]
[tex]\[ 12 + (2)^2 = 12 + 4 = 16, \][/tex]
[tex]\[ \sqrt{16} = 4. \][/tex]
Now substitute back:
[tex]\[ y' = \frac{3 \cdot 4 \cdot 4}{2} = \frac{48}{2} = 24. \][/tex]
### Summary
Therefore, the derivative [tex]\( y' \)[/tex] in general form is:
[tex]\[ y' = \frac{3x^2 \sqrt{12 + y^2}}{y}, \][/tex]
and at the point [tex]\( (2, 2) \)[/tex], the value of [tex]\( y' \)[/tex] (the slope of the tangent line) is:
[tex]\[ \left.y^{\prime}\right|_{(2, 2)} = 24. \][/tex]
So,
[tex]\[ \begin{array}{l} y^{\prime}=\frac{3x^2 \sqrt{12 + y^2}}{y} \\ \left.y^{\prime}\right|_{(2,2)}=24 \end{array} \][/tex]
[tex]\[ \sqrt{12 + y^2} - x^3 + 4 = 0, \][/tex]
follow these steps:
### Step 1: Implicit Differentiation
Differentiate both sides of the equation with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \left( \sqrt{12 + y^2} - x^3 + 4 \right) = \frac{d}{dx}(0). \][/tex]
The left-hand side simplifies using the chain rule.
1. For the term [tex]\( \sqrt{12 + y^2} \)[/tex]:
[tex]\[ \frac{d}{dx} \left( \sqrt{12 + y^2} \right) = \frac{1}{2\sqrt{12 + y^2}} \cdot \frac{d}{dx}(12 + y^2) = \frac{1}{2\sqrt{12 + y^2}} \cdot 2y \cdot \frac{dy}{dx}. \][/tex]
Therefore,
[tex]\[ \frac{d}{dx} \left( \sqrt{12 + y^2} \right) = \frac{y}{\sqrt{12 + y^2}} \cdot y'. \][/tex]
2. For the term [tex]\( -x^3 \)[/tex]:
[tex]\[ \frac{d}{dx} \left( -x^3 \right) = -3x^2. \][/tex]
3. The term [tex]\( +4 \)[/tex] is a constant, so its derivative is [tex]\( 0 \)[/tex].
Putting it all together, we have:
[tex]\[ \frac{y}{\sqrt{12 + y^2}} \cdot y' - 3x^2 = 0. \][/tex]
### Step 2: Solve for [tex]\( y' \)[/tex]
To isolate [tex]\( y' \)[/tex]:
[tex]\[ \frac{y}{\sqrt{12 + y^2}} \cdot y' = 3x^2. \][/tex]
[tex]\[ y' = \frac{3x^2 \sqrt{12 + y^2}}{y}. \][/tex]
### Step 3: Find [tex]\( y' \)[/tex] at the Point [tex]\( (2, 2) \)[/tex]
Substitute [tex]\( x = 2 \)[/tex] and [tex]\( y = 2 \)[/tex] into the equation for [tex]\( y' \)[/tex]:
[tex]\[ y' = \frac{3(2)^2 \sqrt{12 + (2)^2}}{2}. \][/tex]
Calculate each part:
[tex]\[ (2)^2 = 4, \][/tex]
[tex]\[ 12 + (2)^2 = 12 + 4 = 16, \][/tex]
[tex]\[ \sqrt{16} = 4. \][/tex]
Now substitute back:
[tex]\[ y' = \frac{3 \cdot 4 \cdot 4}{2} = \frac{48}{2} = 24. \][/tex]
### Summary
Therefore, the derivative [tex]\( y' \)[/tex] in general form is:
[tex]\[ y' = \frac{3x^2 \sqrt{12 + y^2}}{y}, \][/tex]
and at the point [tex]\( (2, 2) \)[/tex], the value of [tex]\( y' \)[/tex] (the slope of the tangent line) is:
[tex]\[ \left.y^{\prime}\right|_{(2, 2)} = 24. \][/tex]
So,
[tex]\[ \begin{array}{l} y^{\prime}=\frac{3x^2 \sqrt{12 + y^2}}{y} \\ \left.y^{\prime}\right|_{(2,2)}=24 \end{array} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.