Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Which of the following is equivalent to [tex]$16^{\frac{3}{4}}$[/tex]?

A. 6
B. 8
C. 12
D. 64


Sagot :

To solve the given problem, we need to find the value of [tex]\( 16^{\frac{3}{4}} \)[/tex] and determine which of the given options is closest to this value.

Let's break it down step by step:

1. Identify the Base and Exponent:
The base is 16 and the exponent is [tex]\( \frac{3}{4} \)[/tex].

2. Rewrite the Base:
We know that 16 is a power of 2, specifically:
[tex]\[ 16 = 2^4 \][/tex]

3. Apply the Exponent:
We need to apply the exponent [tex]\( \frac{3}{4} \)[/tex] to 16:
[tex]\[ 16^{\frac{3}{4}} = (2^4)^{\frac{3}{4}} \][/tex]

4. Use Power of a Power Property:
The property of exponents [tex]\( (a^m)^n = a^{mn} \)[/tex] tells us that we can multiply the exponents:
[tex]\[ (2^4)^{\frac{3}{4}} = 2^{4 \cdot \frac{3}{4}} = 2^3 \][/tex]

5. Calculate the Final Value:
We calculate [tex]\( 2^3 \)[/tex]:
[tex]\[ 2^3 = 8 \][/tex]

Thus, [tex]\( 16^{\frac{3}{4}} \)[/tex] evaluates to 8.

6. Compare with the Given Options:
The possible answers provided are 6, 8, 12, and 64. Since our calculated value is 8, the value that is equivalent to [tex]\( 16^{\frac{3}{4}} \)[/tex] is:

[tex]\[ \boxed{8} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.