Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Which of the following is equivalent to [tex]$16^{\frac{3}{4}}$[/tex]?

A. 6
B. 8
C. 12
D. 64

Sagot :

To solve the given problem, we need to find the value of [tex]\( 16^{\frac{3}{4}} \)[/tex] and determine which of the given options is closest to this value.

Let's break it down step by step:

1. Identify the Base and Exponent:
The base is 16 and the exponent is [tex]\( \frac{3}{4} \)[/tex].

2. Rewrite the Base:
We know that 16 is a power of 2, specifically:
[tex]\[ 16 = 2^4 \][/tex]

3. Apply the Exponent:
We need to apply the exponent [tex]\( \frac{3}{4} \)[/tex] to 16:
[tex]\[ 16^{\frac{3}{4}} = (2^4)^{\frac{3}{4}} \][/tex]

4. Use Power of a Power Property:
The property of exponents [tex]\( (a^m)^n = a^{mn} \)[/tex] tells us that we can multiply the exponents:
[tex]\[ (2^4)^{\frac{3}{4}} = 2^{4 \cdot \frac{3}{4}} = 2^3 \][/tex]

5. Calculate the Final Value:
We calculate [tex]\( 2^3 \)[/tex]:
[tex]\[ 2^3 = 8 \][/tex]

Thus, [tex]\( 16^{\frac{3}{4}} \)[/tex] evaluates to 8.

6. Compare with the Given Options:
The possible answers provided are 6, 8, 12, and 64. Since our calculated value is 8, the value that is equivalent to [tex]\( 16^{\frac{3}{4}} \)[/tex] is:

[tex]\[ \boxed{8} \][/tex]