Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's walk through the process of solving the equation step-by-step:
We are given the equation:
[tex]\[ 2\left(\frac{1}{49}\right)^{x-2} = 14 \][/tex]
1. Isolate the exponential term:
First, divide both sides of the equation by 2 to isolate the exponential expression:
[tex]\[ \left(\frac{1}{49}\right)^{x-2} = 7 \][/tex]
2. Rewrite the exponential term:
Recall that [tex]\(\frac{1}{49}\)[/tex] can be written as [tex]\(49^{-1}\)[/tex]. So the equation becomes:
[tex]\[ (49^{-1})^{x-2} = 7 \][/tex]
Which simplifies to:
[tex]\[ 49^{-(x-2)} = 7 \][/tex]
3. Express 7 as a power of 49:
We recognize that [tex]\(7^2 = 49\)[/tex]. Therefore, [tex]\(7 = 49^{1/2}\)[/tex]. Substituting this into the equation:
[tex]\[ 49^{-(x-2)} = 49^{1/2} \][/tex]
4. Set the exponents equal to each other:
Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ -(x-2) = \frac{1}{2} \][/tex]
5. Solve for [tex]\(x\)[/tex]:
Simplify the equation to get:
[tex]\[ -(x - 2) = \frac{1}{2} \][/tex]
Distribute the negative sign:
[tex]\[ -x + 2 = \frac{1}{2} \][/tex]
Subtract 2 from both sides:
[tex]\[ -x = \frac{1}{2} - 2 \][/tex]
Simplify the right-hand side:
[tex]\[ -x = \frac{1}{2} - \frac{4}{2} = -\frac{3}{2} \][/tex]
Finally, multiply both sides by -1:
[tex]\[ x = \frac{3}{2} \][/tex]
Thus, the solution to the equation is:
[tex]\[ x = \frac{3}{2} \][/tex]
Therefore, the correct answer is [tex]\(\boxed{\frac{3}{2}}\)[/tex].
We are given the equation:
[tex]\[ 2\left(\frac{1}{49}\right)^{x-2} = 14 \][/tex]
1. Isolate the exponential term:
First, divide both sides of the equation by 2 to isolate the exponential expression:
[tex]\[ \left(\frac{1}{49}\right)^{x-2} = 7 \][/tex]
2. Rewrite the exponential term:
Recall that [tex]\(\frac{1}{49}\)[/tex] can be written as [tex]\(49^{-1}\)[/tex]. So the equation becomes:
[tex]\[ (49^{-1})^{x-2} = 7 \][/tex]
Which simplifies to:
[tex]\[ 49^{-(x-2)} = 7 \][/tex]
3. Express 7 as a power of 49:
We recognize that [tex]\(7^2 = 49\)[/tex]. Therefore, [tex]\(7 = 49^{1/2}\)[/tex]. Substituting this into the equation:
[tex]\[ 49^{-(x-2)} = 49^{1/2} \][/tex]
4. Set the exponents equal to each other:
Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ -(x-2) = \frac{1}{2} \][/tex]
5. Solve for [tex]\(x\)[/tex]:
Simplify the equation to get:
[tex]\[ -(x - 2) = \frac{1}{2} \][/tex]
Distribute the negative sign:
[tex]\[ -x + 2 = \frac{1}{2} \][/tex]
Subtract 2 from both sides:
[tex]\[ -x = \frac{1}{2} - 2 \][/tex]
Simplify the right-hand side:
[tex]\[ -x = \frac{1}{2} - \frac{4}{2} = -\frac{3}{2} \][/tex]
Finally, multiply both sides by -1:
[tex]\[ x = \frac{3}{2} \][/tex]
Thus, the solution to the equation is:
[tex]\[ x = \frac{3}{2} \][/tex]
Therefore, the correct answer is [tex]\(\boxed{\frac{3}{2}}\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.