Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Select the correct answer from the drop-down menu.

[tex]\[ \sin \left(90^{\circ}-x\right)=-\frac{\sqrt{3}}{2} \][/tex]

The value of [tex]\( x \)[/tex] that satisfies the equation is


Sagot :

Let's solve the given trigonometric equation step-by-step.

1. Understand the given equation:
[tex]\[\sin \left(90^{\circ} - x\right) = -\frac{\sqrt{3}}{2}\][/tex]

2. Use the co-function identity for sine:
Recall that [tex]\(\sin \left(90^{\circ} - x\right) = \cos(x)\)[/tex]. This allows us to rewrite the given equation in terms of cosine:
[tex]\[\cos(x) = -\frac{\sqrt{3}}{2}\][/tex]

3. Determine the angles where [tex]\(\cos(x) = -\frac{\sqrt{3}}{2}\)[/tex]:
The values of [tex]\(x\)[/tex] for which [tex]\(\cos(x) = -\frac{\sqrt{3}}{2}\)[/tex] are known from the unit circle. These angles are:
- [tex]\( 150^{\circ} \)[/tex] (since [tex]\( \cos(150^{\circ}) = -\frac{\sqrt{3}}{2} \)[/tex])
- [tex]\( 210^{\circ} \)[/tex] (since [tex]\( \cos(210^{\circ}) = -\frac{\sqrt{3}}{2} \)[/tex])

Therefore, the value of [tex]\(x\)[/tex] that satisfies the equation is:
[tex]\[ \boxed{150^{\circ}\ \text{and}\ 210^{\circ}} \][/tex]